문제를 입력하십시오...
κΈ°μ΄ λ―Έμ λΆ μμ
, , ,
λ¨κ³ 1
μ°λ¦½λ°©μ μμ νλ ¬ νμμΌλ‘ λνλ
λλ€.
λ¨κ³ 2
λ¨κ³ 2.1
Write in determinant notation.
λ¨κ³ 2.2
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
λ¨κ³ 2.2.1
Consider the corresponding sign chart.
λ¨κ³ 2.2.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 2.2.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.2.4
Multiply element by its cofactor.
λ¨κ³ 2.2.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.2.6
Multiply element by its cofactor.
λ¨κ³ 2.2.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.2.8
Multiply element by its cofactor.
λ¨κ³ 2.2.9
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.2.10
Multiply element by its cofactor.
λ¨κ³ 2.2.11
Add the terms together.
λ¨κ³ 2.3
μ μ κ³±ν©λλ€.
λ¨κ³ 2.4
μ μ κ³±ν©λλ€.
λ¨κ³ 2.5
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6
μ κ°μ ꡬν©λλ€.
λ¨κ³ 2.6.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 2.6.1.1
Consider the corresponding sign chart.
λ¨κ³ 2.6.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 2.6.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.6.1.4
Multiply element by its cofactor.
λ¨κ³ 2.6.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.6.1.6
Multiply element by its cofactor.
λ¨κ³ 2.6.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 2.6.1.8
Multiply element by its cofactor.
λ¨κ³ 2.6.1.9
Add the terms together.
λ¨κ³ 2.6.2
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 2.6.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 2.6.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.6.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.6.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.3.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 2.6.3.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.3.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.3.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 2.6.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 2.6.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 2.6.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.6.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.6.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.4.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 2.6.4.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.4.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.4.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 2.6.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.6.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.6.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 2.6.5.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 2.6.5.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 2.7
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 2.7.1
μ μ κ³±ν©λλ€.
λ¨κ³ 2.7.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 2.7.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 2.7.4
λ₯Ό μ λν©λλ€.
λ¨κ³ 3
Since the determinant is not , the system can be solved using Cramer's Rule.
λ¨κ³ 4
λ¨κ³ 4.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
λ¨κ³ 4.2
Find the determinant.
λ¨κ³ 4.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
λ¨κ³ 4.2.1.1
Consider the corresponding sign chart.
λ¨κ³ 4.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 4.2.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.1.4
Multiply element by its cofactor.
λ¨κ³ 4.2.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.1.6
Multiply element by its cofactor.
λ¨κ³ 4.2.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.1.8
Multiply element by its cofactor.
λ¨κ³ 4.2.1.9
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.1.10
Multiply element by its cofactor.
λ¨κ³ 4.2.1.11
Add the terms together.
λ¨κ³ 4.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.3
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.4
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5
μ κ°μ ꡬν©λλ€.
λ¨κ³ 4.2.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 4.2.5.1.1
Consider the corresponding sign chart.
λ¨κ³ 4.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 4.2.5.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.5.1.4
Multiply element by its cofactor.
λ¨κ³ 4.2.5.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.5.1.6
Multiply element by its cofactor.
λ¨κ³ 4.2.5.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 4.2.5.1.8
Multiply element by its cofactor.
λ¨κ³ 4.2.5.1.9
Add the terms together.
λ¨κ³ 4.2.5.2
μ κ°μ ꡬν©λλ€.
λ¨κ³ 4.2.5.2.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 4.2.5.2.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.2.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.2.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.2.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.2.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.2.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.2.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.2.5.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 4.2.5.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 4.2.5.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.3.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.3.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.3.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.3.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.2.5.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 4.2.5.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 4.2.5.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.4.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.4.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.4.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.4.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.2.5.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.5.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.5.1.3
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.5.5.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.2.5.5.3
μμ μ λΊλλ€.
λ¨κ³ 4.2.6
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 4.2.6.1
μ μ κ³±ν©λλ€.
λ¨κ³ 4.2.6.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.2.6.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.2.6.4
λ₯Ό μ λν©λλ€.
λ¨κ³ 4.3
Use the formula to solve for .
λ¨κ³ 4.4
Substitute for and for in the formula.
λ¨κ³ 4.5
μ λ‘ λλλλ€.
λ¨κ³ 5
λ¨κ³ 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
λ¨κ³ 5.2
Find the determinant.
λ¨κ³ 5.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
λ¨κ³ 5.2.1.1
Consider the corresponding sign chart.
λ¨κ³ 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 5.2.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.1.4
Multiply element by its cofactor.
λ¨κ³ 5.2.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.1.6
Multiply element by its cofactor.
λ¨κ³ 5.2.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.1.8
Multiply element by its cofactor.
λ¨κ³ 5.2.1.9
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.1.10
Multiply element by its cofactor.
λ¨κ³ 5.2.1.11
Add the terms together.
λ¨κ³ 5.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.3
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.4
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5
μ κ°μ ꡬν©λλ€.
λ¨κ³ 5.2.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 5.2.5.1.1
Consider the corresponding sign chart.
λ¨κ³ 5.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 5.2.5.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.5.1.4
Multiply element by its cofactor.
λ¨κ³ 5.2.5.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.5.1.6
Multiply element by its cofactor.
λ¨κ³ 5.2.5.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 5.2.5.1.8
Multiply element by its cofactor.
λ¨κ³ 5.2.5.1.9
Add the terms together.
λ¨κ³ 5.2.5.2
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 5.2.5.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 5.2.5.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.5.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.5.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.3.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.3.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.3.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.3.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.2.5.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 5.2.5.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 5.2.5.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.5.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.5.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.4.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.4.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.4.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.4.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.2.5.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.5.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.5.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.5.5.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.2.5.5.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.2.6
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 5.2.6.1
μ μ κ³±ν©λλ€.
λ¨κ³ 5.2.6.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.2.6.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.2.6.4
λ₯Ό μ λν©λλ€.
λ¨κ³ 5.3
Use the formula to solve for .
λ¨κ³ 5.4
Substitute for and for in the formula.
λ¨κ³ 5.5
μ λ‘ λλλλ€.
λ¨κ³ 6
λ¨κ³ 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
λ¨κ³ 6.2
Find the determinant.
λ¨κ³ 6.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
λ¨κ³ 6.2.1.1
Consider the corresponding sign chart.
λ¨κ³ 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 6.2.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.1.4
Multiply element by its cofactor.
λ¨κ³ 6.2.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.1.6
Multiply element by its cofactor.
λ¨κ³ 6.2.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.1.8
Multiply element by its cofactor.
λ¨κ³ 6.2.1.9
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.1.10
Multiply element by its cofactor.
λ¨κ³ 6.2.1.11
Add the terms together.
λ¨κ³ 6.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.3
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.4
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5
μ κ°μ ꡬν©λλ€.
λ¨κ³ 6.2.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 6.2.5.1.1
Consider the corresponding sign chart.
λ¨κ³ 6.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 6.2.5.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.5.1.4
Multiply element by its cofactor.
λ¨κ³ 6.2.5.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.5.1.6
Multiply element by its cofactor.
λ¨κ³ 6.2.5.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 6.2.5.1.8
Multiply element by its cofactor.
λ¨κ³ 6.2.5.1.9
Add the terms together.
λ¨κ³ 6.2.5.2
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 6.2.5.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 6.2.5.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.5.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.5.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.3.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.3.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.3.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.3.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.2.5.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 6.2.5.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 6.2.5.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.5.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.5.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.4.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.4.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.4.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.4.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.2.5.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.5.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.5.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.5.5.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.2.5.5.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.2.6
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 6.2.6.1
μ μ κ³±ν©λλ€.
λ¨κ³ 6.2.6.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.2.6.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.2.6.4
λ₯Ό μ λν©λλ€.
λ¨κ³ 6.3
Use the formula to solve for .
λ¨κ³ 6.4
Substitute for and for in the formula.
λ¨κ³ 6.5
μ λ‘ λλλλ€.
λ¨κ³ 7
λ¨κ³ 7.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
λ¨κ³ 7.2
Find the determinant.
λ¨κ³ 7.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
λ¨κ³ 7.2.1.1
Consider the corresponding sign chart.
λ¨κ³ 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 7.2.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.1.4
Multiply element by its cofactor.
λ¨κ³ 7.2.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.1.6
Multiply element by its cofactor.
λ¨κ³ 7.2.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.1.8
Multiply element by its cofactor.
λ¨κ³ 7.2.1.9
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.1.10
Multiply element by its cofactor.
λ¨κ³ 7.2.1.11
Add the terms together.
λ¨κ³ 7.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.3.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 7.2.3.1.1
Consider the corresponding sign chart.
λ¨κ³ 7.2.3.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 7.2.3.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.3.1.4
Multiply element by its cofactor.
λ¨κ³ 7.2.3.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.3.1.6
Multiply element by its cofactor.
λ¨κ³ 7.2.3.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.3.1.8
Multiply element by its cofactor.
λ¨κ³ 7.2.3.1.9
Add the terms together.
λ¨κ³ 7.2.3.2
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.3.2.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.3.2.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.2.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.2.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.2.2.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.2.2.2
μμ μ λΊλλ€.
λ¨κ³ 7.2.3.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.3.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.3.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.3.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.3.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.3.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.3.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.3.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.3.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.3.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.4.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.4.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.4.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.4.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.3.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.3.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.5.1.3
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.3.5.2
μμ μ λΊλλ€.
λ¨κ³ 7.2.3.5.3
μμ μ λΊλλ€.
λ¨κ³ 7.2.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 7.2.4.1.1
Consider the corresponding sign chart.
λ¨κ³ 7.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 7.2.4.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.4.1.4
Multiply element by its cofactor.
λ¨κ³ 7.2.4.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.4.1.6
Multiply element by its cofactor.
λ¨κ³ 7.2.4.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.4.1.8
Multiply element by its cofactor.
λ¨κ³ 7.2.4.1.9
Add the terms together.
λ¨κ³ 7.2.4.2
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.4.2.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.4.2.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.2.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.2.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.2.2.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.2.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.4.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.4.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.4.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.3.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.3.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.3.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.3.2.2
μμ μ λΊλλ€.
λ¨κ³ 7.2.4.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.4.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.4.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.4.2.1.2
μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.4.2.1.2.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.4.2.1.2.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.4.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.4.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.4.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.5.1.3
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.4.5.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.4.5.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.5
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
λ¨κ³ 7.2.5.1.1
Consider the corresponding sign chart.
λ¨κ³ 7.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
λ¨κ³ 7.2.5.1.3
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.5.1.4
Multiply element by its cofactor.
λ¨κ³ 7.2.5.1.5
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.5.1.6
Multiply element by its cofactor.
λ¨κ³ 7.2.5.1.7
The minor for is the determinant with row and column deleted.
λ¨κ³ 7.2.5.1.8
Multiply element by its cofactor.
λ¨κ³ 7.2.5.1.9
Add the terms together.
λ¨κ³ 7.2.5.2
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.5.2.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.5.2.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.2.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.2.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.2.2.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.2.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.5.3
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.5.3.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.5.3.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.3.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.3.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.3.2.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.3.2.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.5.4
μ κ°μ ꡬν©λλ€.
λ¨κ³ 7.2.5.4.1
νλ ¬μ νλ ¬μμ 곡μμ μ΄μ©ν΄ κ³μ°ν©λλ€.
λ¨κ³ 7.2.5.4.2
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.4.2.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.4.2.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.4.2.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.4.2.2
μμ μ λΊλλ€.
λ¨κ³ 7.2.5.5
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.5.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.5.5.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.5.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.5.1.3
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.5.5.2
μμ μ λΊλλ€.
λ¨κ³ 7.2.5.5.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.6
νλ ¬μμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.6.1
κ° νμ κ°λ¨ν ν©λλ€.
λ¨κ³ 7.2.6.1.1
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.6.1.2
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.6.1.3
μ μ κ³±ν©λλ€.
λ¨κ³ 7.2.6.2
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.6.3
λ₯Ό μ λν©λλ€.
λ¨κ³ 7.2.6.4
μμ μ λΊλλ€.
λ¨κ³ 7.3
Use the formula to solve for .
λ¨κ³ 7.4
Substitute for and for in the formula.
λ¨κ³ 7.5
μ λ‘ λλλλ€.
λ¨κ³ 8
μ°λ¦½λ°©μ μμ ν΄λ₯Ό λμ΄ν©λλ€.