문제를 입력하십시오...
미적분 예제
,
단계 1
단계 1.1
미분합니다.
단계 1.1.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2
의 값을 구합니다.
단계 1.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
을 로 바꿔 씁니다.
단계 1.2.3
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.2.3.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.2.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3.3
를 모두 로 바꿉니다.
단계 1.2.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.5
의 지수를 곱합니다.
단계 1.2.5.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.2.5.2
에 을 곱합니다.
단계 1.2.6
에 을 곱합니다.
단계 1.2.7
지수를 더하여 에 을 곱합니다.
단계 1.2.7.1
를 옮깁니다.
단계 1.2.7.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.2.7.3
에서 을 뺍니다.
단계 1.2.8
에 을 곱합니다.
단계 1.2.9
와 을 묶습니다.
단계 1.2.10
와 을 묶습니다.
단계 1.2.11
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 1.2.12
및 의 공약수로 약분합니다.
단계 1.2.12.1
에서 를 인수분해합니다.
단계 1.2.12.2
공약수로 약분합니다.
단계 1.2.12.2.1
에서 를 인수분해합니다.
단계 1.2.12.2.2
공약수로 약분합니다.
단계 1.2.12.2.3
수식을 다시 씁니다.
단계 2
수식에서 변수 에 을 대입합니다.
단계 3
단계 3.1
1의 모든 거듭제곱은 1입니다.
단계 3.2
에 을 곱합니다.
단계 3.3
1의 모든 거듭제곱은 1입니다.
단계 3.4
에 을 곱합니다.
단계 4
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 5
와 을 묶습니다.
단계 6
공통분모를 가진 분자끼리 묶습니다.
단계 7
단계 7.1
에 을 곱합니다.
단계 7.2
를 에 더합니다.