미적분 예제

Trouver la dérivée de Third arctan(x)
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
에 대해 미분하면입니다.
단계 1.2
항을 다시 정렬합니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로 바꿔 씁니다.
단계 2.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.3
를 모두 로 바꿉니다.
단계 2.3
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.3.4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.4.1
에 더합니다.
단계 2.3.4.2
을 곱합니다.
단계 2.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 2.4.2
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1
을 묶습니다.
단계 2.4.2.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 2.4.2.3
을 묶습니다.
단계 2.4.2.4
의 왼쪽으로 이동하기
단계 3
3차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 3.3
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.1.2
을 곱합니다.
단계 3.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
을 곱합니다.
단계 3.4
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.4.3
를 모두 로 바꿉니다.
단계 3.5
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
을 곱합니다.
단계 3.5.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.1
에서 를 인수분해합니다.
단계 3.5.2.2
에서 를 인수분해합니다.
단계 3.5.2.3
에서 를 인수분해합니다.
단계 3.6
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
에서 를 인수분해합니다.
단계 3.6.2
공약수로 약분합니다.
단계 3.6.3
수식을 다시 씁니다.
단계 3.7
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.8
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.9
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.10
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.10.1
에 더합니다.
단계 3.10.2
을 곱합니다.
단계 3.11
승 합니다.
단계 3.12
승 합니다.
단계 3.13
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.14
에 더합니다.
단계 3.15
에서 을 뺍니다.
단계 3.16
을 묶습니다.
단계 3.17
마이너스 부호를 분수 앞으로 보냅니다.
단계 3.18
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.18.1
분배 법칙을 적용합니다.
단계 3.18.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.18.2.1
을 곱합니다.
단계 3.18.2.2
을 곱합니다.
단계 3.18.3
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.18.3.1
에서 를 인수분해합니다.
단계 3.18.3.2
에서 를 인수분해합니다.
단계 3.18.3.3
에서 를 인수분해합니다.
단계 3.18.4
에서 를 인수분해합니다.
단계 3.18.5
로 바꿔 씁니다.
단계 3.18.6
에서 를 인수분해합니다.
단계 3.18.7
로 바꿔 씁니다.
단계 3.18.8
마이너스 부호를 분수 앞으로 보냅니다.
단계 3.18.9
을 곱합니다.
단계 3.18.10
을 곱합니다.