미적분 예제

역도함수 구하기 f(x)=(3x^4-x^3+6x^2)/(x^4)
단계 1
함수 는 도함수 의 부정 적분을 계산하여 구할 수 있습니다.
단계 2
적분식을 세워 풉니다.
단계 3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
에서 를 인수분해합니다.
단계 3.1.2
에서 를 인수분해합니다.
단계 3.1.3
에서 를 인수분해합니다.
단계 3.1.4
에서 를 인수분해합니다.
단계 3.1.5
에서 를 인수분해합니다.
단계 3.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에서 를 인수분해합니다.
단계 3.2.2
공약수로 약분합니다.
단계 3.2.3
수식을 다시 씁니다.
단계 4
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
승을 취하여 분모 밖으로 옮깁니다.
단계 4.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.2.2
을 곱합니다.
단계 5
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
분배 법칙을 적용합니다.
단계 5.2
분배 법칙을 적용합니다.
단계 5.3
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.4
에서 을 뺍니다.
단계 5.5
모든 수의 승은 입니다.
단계 5.6
을 곱합니다.
단계 5.7
마이너스 부호를 앞으로 보냅니다.
단계 5.8
승 합니다.
단계 5.9
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.10
에서 을 뺍니다.
단계 5.11
을 다시 정렬합니다.
단계 5.12
를 옮깁니다.
단계 6
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 7
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
에 대해 적분하면 입니다.
단계 9
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 10
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 11
상수 규칙을 적용합니다.
단계 12
간단히 합니다.
단계 13
답은 함수 의 역도함수입니다.