미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 f(x)=-x+cos(3pix) , [0,pi/6]
,
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2.3
을 곱합니다.
단계 1.1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.1.3.1.2
에 대해 미분하면입니다.
단계 1.1.1.3.1.3
를 모두 로 바꿉니다.
단계 1.1.1.3.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.3.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.3.4
을 곱합니다.
단계 1.1.1.3.5
을 곱합니다.
단계 1.1.1.4
항을 다시 정렬합니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
방정식의 양변에 를 더합니다.
단계 1.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
의 각 항을 로 나눕니다.
단계 1.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1.1
공약수로 약분합니다.
단계 1.2.3.2.1.2
수식을 다시 씁니다.
단계 1.2.3.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.2.1
공약수로 약분합니다.
단계 1.2.3.2.2.2
로 나눕니다.
단계 1.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.2.4
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 1.2.5
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.5.1
의 값을 구합니다.
단계 1.2.6
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1
의 각 항을 로 나눕니다.
단계 1.2.6.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.1.1
공약수로 약분합니다.
단계 1.2.6.2.1.2
수식을 다시 씁니다.
단계 1.2.6.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.2.1
공약수로 약분합니다.
단계 1.2.6.2.2.2
로 나눕니다.
단계 1.2.6.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.3.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.2.6.3.2
를 근사치로 바꿉니다.
단계 1.2.6.3.3
을 곱합니다.
단계 1.2.6.3.4
로 나눕니다.
단계 1.2.6.3.5
을 곱합니다.
단계 1.2.7
사인 함수는 제3사분면과 제4사분면에서 음의 값을 가집니다. 두 번째 해를 구하려면 에서 해를 빼서 기준각을 찾습니다. 그리고 이 기준각에 를 더하여 제3사분면에 속한 해를 구합니다.
단계 1.2.8
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.1
에서 을 뺍니다.
단계 1.2.8.2
결과 각인 은 양의 값으로 보다 작으며 과 양변을 공유하는 관계입니다.
단계 1.2.8.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.3.1
의 각 항을 로 나눕니다.
단계 1.2.8.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.3.2.1.1
공약수로 약분합니다.
단계 1.2.8.3.2.1.2
수식을 다시 씁니다.
단계 1.2.8.3.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.3.2.2.1
공약수로 약분합니다.
단계 1.2.8.3.2.2.2
로 나눕니다.
단계 1.2.8.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.3.3.1
를 근사치로 바꿉니다.
단계 1.2.8.3.3.2
을 곱합니다.
단계 1.2.8.3.3.3
로 나눕니다.
단계 1.2.9
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.9.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 1.2.9.2
주기 공식에서 을 대입합니다.
단계 1.2.9.3
은 약 로 양수이므로 절댓값 기호를 없앱니다.
단계 1.2.9.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.9.4.1
공약수로 약분합니다.
단계 1.2.9.4.2
수식을 다시 씁니다.
단계 1.2.10
모든 음의 각에 를 더하여 양의 각을 얻습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.10.1
를 더하여 양의 각도를 구합니다.
단계 1.2.10.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.2.10.3
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.10.3.1
을 묶습니다.
단계 1.2.10.3.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.2.10.4
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.10.4.1
을 곱합니다.
단계 1.2.10.4.2
에서 을 뺍니다.
단계 1.2.10.5
로 나눕니다.
단계 1.2.10.6
새 각을 나열합니다.
단계 1.2.11
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 1.4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
를 대입합니다.
단계 1.4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.1
을 곱합니다.
단계 1.4.1.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.2.1
을 곱합니다.
단계 1.4.1.2.1.2.2
을 곱합니다.
단계 1.4.1.2.2
에 더합니다.
단계 1.4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.1
를 대입합니다.
단계 1.4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.1
을 곱합니다.
단계 1.4.2.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.2.1
을 곱합니다.
단계 1.4.2.2.1.2.2
을 곱합니다.
단계 1.4.2.2.2
에 더합니다.
단계 1.4.3
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.3.1
를 대입합니다.
단계 1.4.3.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.3.2.1.1
을 곱합니다.
단계 1.4.3.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.3.2.1.2.1
을 곱합니다.
단계 1.4.3.2.1.2.2
을 곱합니다.
단계 1.4.3.2.2
에 더합니다.
단계 1.4.4
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.4.1
를 대입합니다.
단계 1.4.4.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.4.2.1.1
을 곱합니다.
단계 1.4.4.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.4.2.1.2.1
을 곱합니다.
단계 1.4.4.2.1.2.2
을 곱합니다.
단계 1.4.4.2.2
에 더합니다.
단계 1.4.5
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.5.1
를 대입합니다.
단계 1.4.5.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.5.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.5.2.1.1
을 곱합니다.
단계 1.4.5.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.5.2.1.2.1
을 곱합니다.
단계 1.4.5.2.1.2.2
을 곱합니다.
단계 1.4.5.2.2
에 더합니다.
단계 1.4.6
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.6.1
를 대입합니다.
단계 1.4.6.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.6.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.6.2.1.1
을 곱합니다.
단계 1.4.6.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.6.2.1.2.1
을 곱합니다.
단계 1.4.6.2.1.2.2
을 곱합니다.
단계 1.4.6.2.2
에 더합니다.
단계 1.4.7
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.7.1
를 대입합니다.
단계 1.4.7.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.7.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.7.2.1.1
을 곱합니다.
단계 1.4.7.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.7.2.1.2.1
을 곱합니다.
단계 1.4.7.2.1.2.2
을 곱합니다.
단계 1.4.7.2.2
에 더합니다.
단계 1.4.8
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.8.1
를 대입합니다.
단계 1.4.8.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.8.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.8.2.1.1
을 곱합니다.
단계 1.4.8.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.8.2.1.2.1
을 곱합니다.
단계 1.4.8.2.1.2.2
을 곱합니다.
단계 1.4.8.2.2
에 더합니다.
단계 1.4.9
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.9.1
를 대입합니다.
단계 1.4.9.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.9.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.9.2.1.1
을 곱합니다.
단계 1.4.9.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.9.2.1.2.1
을 곱합니다.
단계 1.4.9.2.1.2.2
을 곱합니다.
단계 1.4.9.2.2
에 더합니다.
단계 1.4.10
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.10.1
를 대입합니다.
단계 1.4.10.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.10.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.10.2.1.1
을 곱합니다.
단계 1.4.10.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.10.2.1.2.1
을 곱합니다.
단계 1.4.10.2.1.2.2
을 곱합니다.
단계 1.4.10.2.2
에 더합니다.
단계 1.4.11
모든 점을 나열합니다.
단계 2
구간에 없는 점은 제외합니다.
단계 3
포함된 끝점에서 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
를 대입합니다.
단계 3.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1.1
을 곱합니다.
단계 3.1.2.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1.2.1
을 곱합니다.
단계 3.1.2.1.2.2
을 곱합니다.
단계 3.1.2.1.3
의 정확한 값은 입니다.
단계 3.1.2.2
에 더합니다.
단계 3.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
를 대입합니다.
단계 3.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.1.1
에서 를 인수분해합니다.
단계 3.2.2.1.1.2
에서 를 인수분해합니다.
단계 3.2.2.1.1.3
공약수로 약분합니다.
단계 3.2.2.1.1.4
수식을 다시 씁니다.
단계 3.2.2.1.2
을 묶습니다.
단계 3.2.2.1.3
승 합니다.
단계 3.2.2.1.4
승 합니다.
단계 3.2.2.1.5
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.2.2.1.6
에 더합니다.
단계 3.2.2.1.7
의 값을 구합니다.
단계 3.2.2.2
에 더합니다.
단계 3.3
모든 점을 나열합니다.
단계 4
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절댓값 최소:
단계 5