미적분 예제

로피탈 법칙을 이용하여 계산하기 x 가 infinity 에 한없이 가까워질 때 극한 (e^(3x))/( 자연로그 x)
단계 1
분자의 극한과 분모의 극한을 구하세요.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
분자와 분모에 극한을 취합니다.
단계 1.2
지수 에 가까워지기 때문에 수량 에 가까워집니다.
단계 1.3
로그가 무한대에 가까워지면 값은 (으)로 이동합니다.
단계 1.4
무한대를 무한대로 나눈 값은 정의되지 않습니다.
정의되지 않음
단계 2
은 부정형이므로, 로피탈의 정리를 적용합니다. 로피탈의 정리에 의하면 함수의 몫의 극한은 도함수의 몫의 극한과 같습니다.
단계 3
분자와 분모를 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
분자와 분모를 미분합니다.
단계 3.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 3.2.3
를 모두 로 바꿉니다.
단계 3.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.5
을 곱합니다.
단계 3.6
의 왼쪽으로 이동하기
단계 3.7
을 곱합니다.
단계 3.8
에 대해 미분하면입니다.
단계 4
분자에 분모의 역수를 곱합니다.
단계 5
극한값을 계산합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
에 가까워지는 극한에 대해 극한의 곱의 법칙을 적용하여 극한을 나눕니다.
단계 5.2
에 가까워질 때 상수값 의 극한을 구합니다.
단계 6
지수 에 가까워지기 때문에 수량 에 가까워집니다.
단계 7
극한값을 계산합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
최고차항이 양수인 다항식에 대한 무한대에서의 극한값은 무한대입니다.
단계 7.2
답을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
0이 아닌 상수 곱하기 무한대는 무한대입니다.
단계 7.2.2
무한대 곱하기 무한대는 무한대입니다.