미적분 예제

함수의 평균값 구하기 h(x)=6cos(x)^4sin(x) , [0,pi]
,
단계 1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
구간 표기:
조건제시법:
단계 2
에서 연속입니다.
는 연속입니다
단계 3
구간에서의 함수 의 평균값은 로 정의됩니다.
단계 4
실제값을 함수의 평균값을 구하는 공식에 대입합니다.
단계 5
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 6
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
를 미분합니다.
단계 6.1.2
에 대해 미분하면입니다.
단계 6.2
에 극한의 하한을 대입합니다.
단계 6.3
의 정확한 값은 입니다.
단계 6.4
에 극한의 상한을 대입합니다.
단계 6.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.5.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 코사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 6.5.2
의 정확한 값은 입니다.
단계 6.5.3
을 곱합니다.
단계 6.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 6.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 7
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
을 곱합니다.
단계 9
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 10
을 묶습니다.
단계 11
대입하여 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
, 일 때, 값을 계산합니다.
단계 11.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
승 합니다.
단계 11.2.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 11.2.3
1의 모든 거듭제곱은 1입니다.
단계 11.2.4
에서 을 뺍니다.
단계 11.2.5
을 묶습니다.
단계 11.2.6
마이너스 부호를 분수 앞으로 보냅니다.
단계 11.2.7
을 곱합니다.
단계 11.2.8
을 묶습니다.
단계 11.2.9
을 곱합니다.
단계 12
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1
을 곱합니다.
단계 12.2
에 더합니다.
단계 13
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
을 곱합니다.
단계 13.2
의 왼쪽으로 이동하기
단계 14