미적분 예제

Trouver la dérivée à l'aide du théorème de dérivation des fonctions composées - d/dd (d^3)/(dx^3)sin(x)^3
단계 1
해당 도함수는 연쇄법칙을 사용하여 풀 수 없습니다. Mathway에서 다른 방법을 사용합니다.
단계 2
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.1.3
를 모두 로 바꿉니다.
단계 2.2
에 대해 미분하면입니다.
단계 3
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 3.3
에 대해 미분하면입니다.
단계 3.4
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
를 옮깁니다.
단계 3.4.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1
승 합니다.
단계 3.4.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.4.3
에 더합니다.
단계 3.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
의 왼쪽으로 이동하기
단계 3.5.2
로 바꿔 씁니다.
단계 3.6
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.6.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.6.3
를 모두 로 바꿉니다.
단계 3.7
의 왼쪽으로 이동하기
단계 3.8
에 대해 미분하면입니다.
단계 3.9
승 합니다.
단계 3.10
승 합니다.
단계 3.11
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.12
에 더합니다.
단계 3.13
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.13.1
분배 법칙을 적용합니다.
단계 3.13.2
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.13.2.1
을 곱합니다.
단계 3.13.2.2
을 곱합니다.
단계 3.13.3
항을 다시 정렬합니다.
단계 4
3차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 4.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.2.2
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 4.2.3
에 대해 미분하면입니다.
단계 4.2.4
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.4.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.2.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.2.4.3
를 모두 로 바꿉니다.
단계 4.2.5
에 대해 미분하면입니다.
단계 4.2.6
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.6.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.6.1.1
승 합니다.
단계 4.2.6.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.2.6.2
에 더합니다.
단계 4.2.7
을 곱합니다.
단계 4.2.8
승 합니다.
단계 4.2.9
승 합니다.
단계 4.2.10
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.2.11
에 더합니다.
단계 4.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.3.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.3.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.3.2.3
를 모두 로 바꿉니다.
단계 4.3.3
에 대해 미분하면입니다.
단계 4.3.4
을 곱합니다.
단계 4.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
분배 법칙을 적용합니다.
단계 4.4.2
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1
을 곱합니다.
단계 4.4.2.2
인수를 다시 정렬합니다.
단계 4.4.2.3
에서 을 뺍니다.
단계 4.4.3
항을 다시 정렬합니다.