미적분 예제

Trouver la dérivée de Third f(x)=cot(x)
단계 1
에 대해 미분하면입니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.3
를 모두 로 바꿉니다.
단계 2.3
을 곱합니다.
단계 2.4
에 대해 미분하면입니다.
단계 2.5
을 곱합니다.
단계 2.6
승 합니다.
단계 2.7
승 합니다.
단계 2.8
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.9
에 더합니다.
단계 3
3차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 3.3
에 대해 미분하면입니다.
단계 3.4
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
를 옮깁니다.
단계 3.4.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.4.3
에 더합니다.
단계 3.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
의 왼쪽으로 이동하기
단계 3.5.2
로 바꿔 씁니다.
단계 3.6
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.6.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.6.3
를 모두 로 바꿉니다.
단계 3.7
의 왼쪽으로 이동하기
단계 3.8
에 대해 미분하면입니다.
단계 3.9
을 곱합니다.
단계 3.10
승 합니다.
단계 3.11
승 합니다.
단계 3.12
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.13
에 더합니다.
단계 3.14
승 합니다.
단계 3.15
승 합니다.
단계 3.16
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.17
에 더합니다.
단계 3.18
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.18.1
분배 법칙을 적용합니다.
단계 3.18.2
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.18.2.1
을 곱합니다.
단계 3.18.2.2
을 곱합니다.
단계 3.18.3
항을 다시 정렬합니다.
단계 4
에 대한 3차 도함수는 입니다.