문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.3
미분합니다.
단계 1.3.1
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.2
에 을 곱합니다.
단계 1.3.3
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.3.4
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.3.5
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.6
에 을 곱합니다.
단계 1.3.7
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.3.8
식을 간단히 합니다.
단계 1.3.8.1
를 에 더합니다.
단계 1.3.8.2
에 을 곱합니다.
단계 1.4
를 승 합니다.
단계 1.5
를 승 합니다.
단계 1.6
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.7
를 에 더합니다.
단계 1.8
에서 을 뺍니다.
단계 1.9
와 을 묶습니다.
단계 1.10
간단히 합니다.
단계 1.10.1
분배 법칙을 적용합니다.
단계 1.10.2
각 항을 간단히 합니다.
단계 1.10.2.1
에 을 곱합니다.
단계 1.10.2.2
에 을 곱합니다.
단계 2
단계 2.1
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 2.2
미분합니다.
단계 2.2.1
의 지수를 곱합니다.
단계 2.2.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.1.2
에 을 곱합니다.
단계 2.2.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 2.2.3
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.5
에 을 곱합니다.
단계 2.2.6
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 2.2.7
를 에 더합니다.
단계 2.3
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 2.3.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 2.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
를 모두 로 바꿉니다.
단계 2.4
미분합니다.
단계 2.4.1
에 을 곱합니다.
단계 2.4.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 2.4.3
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.4.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.4.5
에 을 곱합니다.
단계 2.4.6
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 2.4.7
식을 간단히 합니다.
단계 2.4.7.1
를 에 더합니다.
단계 2.4.7.2
의 왼쪽으로 이동하기
단계 2.4.7.3
에 을 곱합니다.
단계 2.5
간단히 합니다.
단계 2.5.1
분배 법칙을 적용합니다.
단계 2.5.2
분배 법칙을 적용합니다.
단계 2.5.3
분자를 간단히 합니다.
단계 2.5.3.1
각 항을 간단히 합니다.
단계 2.5.3.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.5.3.1.2
을 로 바꿔 씁니다.
단계 2.5.3.1.3
FOIL 계산법을 이용하여 를 전개합니다.
단계 2.5.3.1.3.1
분배 법칙을 적용합니다.
단계 2.5.3.1.3.2
분배 법칙을 적용합니다.
단계 2.5.3.1.3.3
분배 법칙을 적용합니다.
단계 2.5.3.1.4
동류항끼리 묶고 식을 간단히 합니다.
단계 2.5.3.1.4.1
각 항을 간단히 합니다.
단계 2.5.3.1.4.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.5.3.1.4.1.2
지수를 더하여 에 을 곱합니다.
단계 2.5.3.1.4.1.2.1
를 옮깁니다.
단계 2.5.3.1.4.1.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.1.4.1.2.3
를 에 더합니다.
단계 2.5.3.1.4.1.3
에 을 곱합니다.
단계 2.5.3.1.4.1.4
에 을 곱합니다.
단계 2.5.3.1.4.1.5
에 을 곱합니다.
단계 2.5.3.1.4.1.6
에 을 곱합니다.
단계 2.5.3.1.4.2
에서 을 뺍니다.
단계 2.5.3.1.5
분배 법칙을 적용합니다.
단계 2.5.3.1.6
간단히 합니다.
단계 2.5.3.1.6.1
에 을 곱합니다.
단계 2.5.3.1.6.2
에 을 곱합니다.
단계 2.5.3.1.6.3
에 을 곱합니다.
단계 2.5.3.1.7
분배 법칙을 적용합니다.
단계 2.5.3.1.8
간단히 합니다.
단계 2.5.3.1.8.1
지수를 더하여 에 을 곱합니다.
단계 2.5.3.1.8.1.1
를 옮깁니다.
단계 2.5.3.1.8.1.2
에 을 곱합니다.
단계 2.5.3.1.8.1.2.1
를 승 합니다.
단계 2.5.3.1.8.1.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.1.8.1.3
를 에 더합니다.
단계 2.5.3.1.8.2
지수를 더하여 에 을 곱합니다.
단계 2.5.3.1.8.2.1
를 옮깁니다.
단계 2.5.3.1.8.2.2
에 을 곱합니다.
단계 2.5.3.1.8.2.2.1
를 승 합니다.
단계 2.5.3.1.8.2.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.1.8.2.3
를 에 더합니다.
단계 2.5.3.1.9
각 항을 간단히 합니다.
단계 2.5.3.1.9.1
에 을 곱합니다.
단계 2.5.3.1.9.2
에 을 곱합니다.
단계 2.5.3.1.10
지수를 더하여 에 을 곱합니다.
단계 2.5.3.1.10.1
를 옮깁니다.
단계 2.5.3.1.10.2
에 을 곱합니다.
단계 2.5.3.1.10.2.1
를 승 합니다.
단계 2.5.3.1.10.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.1.10.3
를 에 더합니다.
단계 2.5.3.1.11
FOIL 계산법을 이용하여 를 전개합니다.
단계 2.5.3.1.11.1
분배 법칙을 적용합니다.
단계 2.5.3.1.11.2
분배 법칙을 적용합니다.
단계 2.5.3.1.11.3
분배 법칙을 적용합니다.
단계 2.5.3.1.12
동류항끼리 묶고 식을 간단히 합니다.
단계 2.5.3.1.12.1
각 항을 간단히 합니다.
단계 2.5.3.1.12.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.5.3.1.12.1.2
지수를 더하여 에 을 곱합니다.
단계 2.5.3.1.12.1.2.1
를 옮깁니다.
단계 2.5.3.1.12.1.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.1.12.1.2.3
를 에 더합니다.
단계 2.5.3.1.12.1.3
에 을 곱합니다.
단계 2.5.3.1.12.1.4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.5.3.1.12.1.5
지수를 더하여 에 을 곱합니다.
단계 2.5.3.1.12.1.5.1
를 옮깁니다.
단계 2.5.3.1.12.1.5.2
에 을 곱합니다.
단계 2.5.3.1.12.1.5.2.1
를 승 합니다.
단계 2.5.3.1.12.1.5.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.1.12.1.5.3
를 에 더합니다.
단계 2.5.3.1.12.1.6
에 을 곱합니다.
단계 2.5.3.1.12.1.7
에 을 곱합니다.
단계 2.5.3.1.12.1.8
에 을 곱합니다.
단계 2.5.3.1.12.2
를 에 더합니다.
단계 2.5.3.1.12.3
를 에 더합니다.
단계 2.5.3.2
를 에 더합니다.
단계 2.5.3.3
에서 을 뺍니다.
단계 2.5.4
분자를 간단히 합니다.
단계 2.5.4.1
에서 를 인수분해합니다.
단계 2.5.4.1.1
에서 를 인수분해합니다.
단계 2.5.4.1.2
에서 를 인수분해합니다.
단계 2.5.4.1.3
에서 를 인수분해합니다.
단계 2.5.4.1.4
에서 를 인수분해합니다.
단계 2.5.4.1.5
에서 를 인수분해합니다.
단계 2.5.4.2
을 로 바꿔 씁니다.
단계 2.5.4.3
로 정의합니다. 식에 나타나는 모든 를 로 바꿉니다.
단계 2.5.4.4
공통인수를 이용하여 인수분해를 합니다.
단계 2.5.4.4.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 2.5.4.4.1.1
에서 를 인수분해합니다.
단계 2.5.4.4.1.2
를 + 로 다시 씁니다.
단계 2.5.4.4.1.3
분배 법칙을 적용합니다.
단계 2.5.4.4.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.5.4.4.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 2.5.4.4.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.5.4.4.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 2.5.4.5
를 모두 로 바꿉니다.
단계 2.5.4.6
을 로 바꿔 씁니다.
단계 2.5.4.7
을 로 바꿔 씁니다.
단계 2.5.4.8
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 2.5.5
분모를 간단히 합니다.
단계 2.5.5.1
을 로 바꿔 씁니다.
단계 2.5.5.2
을 로 바꿔 씁니다.
단계 2.5.5.3
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 2.5.5.4
에 곱의 미분 법칙을 적용합니다.
단계 2.5.6
및 의 공약수로 약분합니다.
단계 2.5.6.1
에서 를 인수분해합니다.
단계 2.5.6.2
공약수로 약분합니다.
단계 2.5.6.2.1
에서 를 인수분해합니다.
단계 2.5.6.2.2
공약수로 약분합니다.
단계 2.5.6.2.3
수식을 다시 씁니다.
단계 2.5.7
및 의 공약수로 약분합니다.
단계 2.5.7.1
에서 를 인수분해합니다.
단계 2.5.7.2
공약수로 약분합니다.
단계 2.5.7.2.1
에서 를 인수분해합니다.
단계 2.5.7.2.2
공약수로 약분합니다.
단계 2.5.7.2.3
수식을 다시 씁니다.