미적분 예제

극대값 및 극소값 구하기 F(x)=x+4cos(x)
단계 1
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
에 대해 미분하면입니다.
단계 1.2.3
을 곱합니다.
단계 2
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.1.2
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.2
에 대해 미분하면입니다.
단계 2.3
에서 을 뺍니다.
단계 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 4
방정식의 양변에서 를 뺍니다.
단계 5
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 각 항을 로 나눕니다.
단계 5.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1.1
공약수로 약분합니다.
단계 5.2.1.2
로 나눕니다.
단계 5.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
두 음수를 나누면 양수가 나옵니다.
단계 6
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 7
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
의 값을 구합니다.
단계 8
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 9
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
괄호를 제거합니다.
단계 9.2
괄호를 제거합니다.
단계 9.3
에서 을 뺍니다.
단계 10
방정식 의 해.
단계 11
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 12
이계도함수가 음수이므로 은 극대값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극대값입니다
단계 13
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
수식에서 변수 을 대입합니다.
단계 13.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.2.1
에 더합니다.
단계 13.2.2
최종 답은 입니다.
단계 14
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 15
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
단계 16
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.1
수식에서 변수 을 대입합니다.
단계 16.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.2.1
에 더합니다.
단계 16.2.2
최종 답은 입니다.
단계 17
에 대한 극값입니다.
은 극댓값임
은 극솟값임
단계 18