문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
미분합니다.
단계 1.1.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.2
의 값을 구합니다.
단계 1.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3
에 을 곱합니다.
단계 1.3
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.4
간단히 합니다.
단계 1.4.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 1.4.2
항을 묶습니다.
단계 1.4.2.1
와 을 묶습니다.
단계 1.4.2.2
를 에 더합니다.
단계 1.4.2.3
를 에 더합니다.
단계 2
단계 2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
지수의 기본 법칙을 적용합니다.
단계 2.2.1
을 로 바꿔 씁니다.
단계 2.2.2
의 지수를 곱합니다.
단계 2.2.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.2.2
에 을 곱합니다.
단계 2.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.4
에 을 곱합니다.
단계 2.5
간단히 합니다.
단계 2.5.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 2.5.2
항을 묶습니다.
단계 2.5.2.1
와 을 묶습니다.
단계 2.5.2.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 4
단계 4.1
1차 도함수를 구합니다.
단계 4.1.1
미분합니다.
단계 4.1.1.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 4.1.1.2
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 4.1.2
의 값을 구합니다.
단계 4.1.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.1.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.2.3
에 을 곱합니다.
단계 4.1.3
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 4.1.4
간단히 합니다.
단계 4.1.4.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 4.1.4.2
항을 묶습니다.
단계 4.1.4.2.1
와 을 묶습니다.
단계 4.1.4.2.2
를 에 더합니다.
단계 4.1.4.2.3
를 에 더합니다.
단계 4.2
의 에 대한 1차 도함수는 입니다.
단계 5
단계 5.1
1차 도함수가 이 되게 합니다.
단계 5.2
분자가 0과 같게 만듭니다.
단계 5.3
이므로, 해가 존재하지 않습니다.
해 없음
해 없음
단계 6
단계 6.1
분수 지수가 있는 식을 근호로 변환합니다.
단계 6.1.1
을(를) 분수로 바꿉니다.
단계 6.1.1.1
소수점을 제거하려면 을(를) 곱합니다.
단계 6.1.1.2
에 을 곱합니다.
단계 6.1.1.3
및 의 공약수로 약분합니다.
단계 6.1.1.3.1
에서 를 인수분해합니다.
단계 6.1.1.3.2
공약수로 약분합니다.
단계 6.1.1.3.2.1
에서 를 인수분해합니다.
단계 6.1.1.3.2.2
공약수로 약분합니다.
단계 6.1.1.3.2.3
수식을 다시 씁니다.
단계 6.1.2
규칙 을 적용하여 지수 형태를 근호로 다시 씁니다.
단계 6.2
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 6.3
에 대해 풉니다.
단계 6.3.1
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 승합니다.
단계 6.3.2
방정식의 각 변을 간단히 합니다.
단계 6.3.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 6.3.2.2
좌변을 간단히 합니다.
단계 6.3.2.2.1
의 지수를 곱합니다.
단계 6.3.2.2.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 6.3.2.2.1.2
의 공약수로 약분합니다.
단계 6.3.2.2.1.2.1
공약수로 약분합니다.
단계 6.3.2.2.1.2.2
수식을 다시 씁니다.
단계 6.3.2.3
우변을 간단히 합니다.
단계 6.3.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 6.3.3
에 대해 풉니다.
단계 6.3.3.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 6.3.3.2
을 간단히 합니다.
단계 6.3.3.2.1
을 로 바꿔 씁니다.
단계 6.3.3.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 6.3.3.2.3
플러스 마이너스 은 입니다.
단계 7
계산할 임계점.
단계 8
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 9
단계 9.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 9.2
으로 나누기가 수식에 포함되어 있습니다. 수식이 정의되지 않습니다.
정의되지 않음
정의되지 않음
단계 10
1차 도함수 판정에 실패했으므로 극값이 없습니다.
극값 없음
단계 11