미적분 예제

극대값 및 극소값 구하기 f(x)=2sec(x)
단계 1
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2
에 대해 미분하면입니다.
단계 2
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2.3
에 대해 미분하면입니다.
단계 2.4
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1.1
승 합니다.
단계 2.4.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.4.2
에 더합니다.
단계 2.5
에 대해 미분하면입니다.
단계 2.6
승 합니다.
단계 2.7
승 합니다.
단계 2.8
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.9
에 더합니다.
단계 2.10
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.1
분배 법칙을 적용합니다.
단계 2.10.2
항을 다시 정렬합니다.
단계 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
와 같다고 둡니다.
단계 5.2
시컨트의 범위는 입니다. 이 이 영역에 속하지 않으므로, 해가 존재하지 않습니다.
해 없음
해 없음
단계 6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
와 같다고 둡니다.
단계 6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
탄젠트 안의 를 꺼내기 위해 방정식 양변에 탄젠트의 역을 취합니다.
단계 6.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
의 정확한 값은 입니다.
단계 6.2.3
탄젠트 함수는 제1사분면과 제3사분면에서 양의 값을 가집니다. 두번째 해를 구하려면 에 기준각을 더하여 제4사분면에 있는 해를 구합니다.
단계 6.2.4
에 더합니다.
단계 6.2.5
방정식 의 해.
단계 7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 8
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 9
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.1
의 정확한 값은 입니다.
단계 9.1.2
을 여러 번 거듭제곱해도 이 나옵니다.
단계 9.1.3
을 곱합니다.
단계 9.1.4
의 정확한 값은 입니다.
단계 9.1.5
을 곱합니다.
단계 9.1.6
의 정확한 값은 입니다.
단계 9.1.7
1의 모든 거듭제곱은 1입니다.
단계 9.1.8
을 곱합니다.
단계 9.2
에 더합니다.
단계 10
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
단계 11
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
수식에서 변수 을 대입합니다.
단계 11.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
의 정확한 값은 입니다.
단계 11.2.2
을 곱합니다.
단계 11.2.3
최종 답은 입니다.
단계 12
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 13
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 탄젠트가 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 13.1.2
의 정확한 값은 입니다.
단계 13.1.3
을 곱합니다.
단계 13.1.4
을 여러 번 거듭제곱해도 이 나옵니다.
단계 13.1.5
을 곱합니다.
단계 13.1.6
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 시컨트가 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 13.1.7
의 정확한 값은 입니다.
단계 13.1.8
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1.8.1
을 곱합니다.
단계 13.1.8.2
을 곱합니다.
단계 13.1.9
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 시컨트가 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 13.1.10
의 정확한 값은 입니다.
단계 13.1.11
을 곱합니다.
단계 13.1.12
승 합니다.
단계 13.1.13
을 곱합니다.
단계 13.2
에서 을 뺍니다.
단계 14
이계도함수가 음수이므로 은 극대값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극대값입니다
단계 15
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.1
수식에서 변수 을 대입합니다.
단계 15.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.2.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 시컨트가 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 15.2.2
의 정확한 값은 입니다.
단계 15.2.3
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.2.3.1
을 곱합니다.
단계 15.2.3.2
을 곱합니다.
단계 15.2.4
최종 답은 입니다.
단계 16
에 대한 극값입니다.
은 극솟값임
은 극댓값임
단계 17