๋ฏธ์ ๋ถ„ ์˜ˆ์ œ

Trouver la dérivée de 2nd y=5xsin(x)
๋‹จ๊ณ„ 1
1์ฐจ ๋„ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2
, ์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๊ณฑ์˜ ๋ฏธ๋ถ„ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.3
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.4
๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.4.1
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.4.2
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5
๋ถ„๋ฐฐ ๋ฒ•์น™์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2
2์ฐจ ๋„ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.1
ํ•ฉ์˜ ๋ฒ•์น™์— ์˜ํ•ด ๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.2.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.2
, ์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๊ณฑ์˜ ๋ฏธ๋ถ„ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.3
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.4
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2.5
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.3.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.2
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.4
๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.4.1
๋ถ„๋ฐฐ ๋ฒ•์น™์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.4.2
ํ•ญ์„ ๋ฌถ์Šต๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.4.2.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.4.2.2
๋ฅผ ์— ๋”ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3
3์ฐจ ๋„ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 3.1
ํ•ฉ์˜ ๋ฒ•์น™์— ์˜ํ•ด ๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.2
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 3.2.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.2.2
, ์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๊ณฑ์˜ ๋ฏธ๋ถ„ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.2.3
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.2.4
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.2.5
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.3
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 3.3.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.3.2
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.3.3
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.4
๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 3.4.1
๋ถ„๋ฐฐ ๋ฒ•์น™์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3.4.2
์—์„œ ์„ ๋บ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4
4์ฐจ ๋„ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 4.1
ํ•ฉ์˜ ๋ฒ•์น™์— ์˜ํ•ด ๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.2
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 4.2.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.2.2
, ์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๊ณฑ์˜ ๋ฏธ๋ถ„ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.2.3
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.2.4
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.2.5
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.3
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 4.3.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.3.2
๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.4
๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 4.4.1
๋ถ„๋ฐฐ ๋ฒ•์น™์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.4.2
ํ•ญ์„ ๋ฌถ์Šต๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 4.4.2.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 4.4.2.2
์—์„œ ์„ ๋บ๋‹ˆ๋‹ค.