๋ฏธ์ ๋ถ„ ์˜ˆ์ œ

Trouver la tangente à (1,1) 2x^2+xy+2y^2=5 , (1,1)
,
๋‹จ๊ณ„ 1
1์ฐจ ๋„ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•˜๊ณ  , ์—์„œ์˜ ๊ฐ’์„ ๊ณ„์‚ฐํ•˜์—ฌ ์ ‘์„ ์˜ ๊ธฐ์šธ๊ธฐ๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.1
๋ฐฉ์ •์‹์˜ ์–‘๋ณ€์„ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2
๋ฐฉ์ •์‹์˜ ์ขŒ๋ณ€์„ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.2.1
ํ•ฉ์˜ ๋ฒ•์น™์— ์˜ํ•ด ๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.2
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.2.2.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.2.2
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.2.3
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.3
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.2.3.1
, ์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๊ณฑ์˜ ๋ฏธ๋ถ„ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.3.2
์„ ๋กœ ๋ฐ”๊ฟ” ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.3.3
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.3.4
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.4
์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.2.4.1
์€ ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ ์— ๋Œ€ํ•œ ์˜ ๋ฏธ๋ถ„์€ ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.4.2
, ์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ์—ฐ์‡„ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.2.4.2.1
์—ฐ์‡„๋ฒ•์น™์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋ฅผ ๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.4.2.2
์ผ ๋•Œ ๋Š” ์ด๋ผ๋Š” ๋ฉฑ์˜ ๋ฒ•์น™์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.4.2.3
๋ฅผ ๋ชจ๋‘ ๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.4.3
์„ ๋กœ ๋ฐ”๊ฟ” ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.4.4
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.2.5
ํ•ญ์„ ๋‹ค์‹œ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.3
์ด ์— ๋Œ€ํ•ด ์ผ์ •ํ•˜๋ฏ€๋กœ, ๋ฅผ ์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด ์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.4
์ขŒ๋ณ€์ด ์šฐ๋ณ€๊ณผ ๊ฐ™๋„๋ก ๋ฐฉ์ •์‹์„ ๊ณ ์นฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5
์— ๋Œ€ํ•ด ํ’‰๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.1
๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์€ ๋ชจ๋“  ํ•ญ์„ ๋ฐฉ์ •์‹์˜ ์šฐ๋ณ€์œผ๋กœ ์˜ฎ๊น๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.1.1
๋ฐฉ์ •์‹์˜ ์–‘๋ณ€์—์„œ ๋ฅผ ๋บ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.1.2
๋ฐฉ์ •์‹์˜ ์–‘๋ณ€์—์„œ ๋ฅผ ๋บ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.2
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.2.1
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.2.2
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.2.3
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3
์˜ ๊ฐ ํ•ญ์„ ๋กœ ๋‚˜๋ˆ„๊ณ  ์‹์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.3.1
์˜ ๊ฐ ํ•ญ์„ ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.2
์ขŒ๋ณ€์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.3.2.1
์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.3.2.1.1
๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.2.1.2
์„ ๋กœ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.3
์šฐ๋ณ€์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.3.3.1
๊ณตํ†ต๋ถ„๋ชจ๋ฅผ ๊ฐ€์ง„ ๋ถ„์ž๋ผ๋ฆฌ ๋ฌถ์Šต๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.3.2
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.3.3
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.3.4
์—์„œ ๋ฅผ ์ธ์ˆ˜๋ถ„ํ•ดํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.3.5
์‹์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.5.3.3.5.1
์„ ๋กœ ๋ฐ”๊ฟ” ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.5.3.3.5.2
๋งˆ์ด๋„ˆ์Šค ๋ถ€ํ˜ธ๋ฅผ ๋ถ„์ˆ˜ ์•ž์œผ๋กœ ๋ณด๋ƒ…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.6
์— ๋ฅผ ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7
์™€ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.7.1
์ˆ˜์‹์—์„œ ๋ณ€์ˆ˜ ์— ์„ ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.2
์ˆ˜์‹์—์„œ ๋ณ€์ˆ˜ ์— ์„ ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.3
๊ด„ํ˜ธ๋ฅผ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.4
๋ถ„์ž๋ฅผ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.7.4.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.4.2
๋ฅผ ์— ๋”ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.5
๋ถ„๋ชจ๋ฅผ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.7.5.1
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.5.2
๋ฅผ ์— ๋”ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.6
๊ณต์•ฝ์ˆ˜๋ฅผ ์†Œ๊ฑฐํ•˜์—ฌ ์ˆ˜์‹์„ ๊ฐ„๋‹จํžˆ ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.7.6.1
์˜ ๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 1.7.6.1.1
๊ณต์•ฝ์ˆ˜๋กœ ์•ฝ๋ถ„ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.6.1.2
์ˆ˜์‹์„ ๋‹ค์‹œ ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 1.7.6.2
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2
๊ธฐ์šธ๊ธฐ ๋ฐ ์  ๊ฐ’์„ ์ -๊ธฐ์šธ๊ธฐ ๊ณต์‹์— ๋Œ€์ž…ํ•˜๊ณ  ์— ๋Œ€ํ•ด ํ’‰๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.1
๊ธฐ์šธ๊ธฐ ๊ณผ ์ฃผ์–ด์ง„ ์  ์„ ์‚ฌ์šฉํ•ด ์ -๊ธฐ์šธ๊ธฐ ํ˜•ํƒœ ์˜ ๋ฐ ์— ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค. ์ -๊ธฐ์šธ๊ธฐ ํ˜•ํƒœ๋Š” ๊ธฐ์šธ๊ธฐ ๋ฐฉ์ •์‹ ์—์„œ ์œ ๋„ํ•œ ์‹์ž…๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.2
๋ฐฉ์ •์‹์„ ๊ฐ„๋‹จํžˆ ํ•˜๊ณ  ์ -๊ธฐ์šธ๊ธฐ ํ˜•ํƒœ๋ฅผ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3
์— ๋Œ€ํ•ด ํ’‰๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.3.1
์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.3.1.1
๋‹ค์‹œ ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.1.2
0์„ ๋”ํ•ด ์‹์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.1.3
๋ถ„๋ฐฐ ๋ฒ•์น™์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.1.4
์‹์„ ๊ฐ„๋‹จํžˆ ํ•ฉ๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.3.1.4.1
์„ ๋กœ ๋ฐ”๊ฟ” ์”๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.1.4.2
์— ์„ ๊ณฑํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.2
๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š์€ ๋ชจ๋“  ํ•ญ์„ ๋ฐฉ์ •์‹์˜ ์šฐ๋ณ€์œผ๋กœ ์˜ฎ๊น๋‹ˆ๋‹ค.
์ž์„ธํ•œ ํ’€์ด ๋‹จ๊ณ„๋ฅผ ๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ๋ˆ„๋ฅด์‹ญ์‹œ์˜ค...
๋‹จ๊ณ„ 2.3.2.1
๋ฐฉ์ •์‹์˜ ์–‘๋ณ€์— ๋ฅผ ๋”ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 2.3.2.2
๋ฅผ ์— ๋”ํ•ฉ๋‹ˆ๋‹ค.
๋‹จ๊ณ„ 3