미적분 예제

Trouver la dérivée - d/dx y=(cos(x))/(sin(x)^2)
단계 1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2
을 곱합니다.
단계 3
에 대해 미분하면입니다.
단계 4
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
를 옮깁니다.
단계 4.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
승 합니다.
단계 4.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.3
에 더합니다.
단계 5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 왼쪽으로 이동하기
단계 5.2
로 바꿔 씁니다.
단계 6
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 6.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 6.3
를 모두 로 바꿉니다.
단계 7
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
을 곱합니다.
단계 7.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
에서 를 인수분해합니다.
단계 7.2.2
에서 를 인수분해합니다.
단계 7.2.3
에서 를 인수분해합니다.
단계 8
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
에서 를 인수분해합니다.
단계 8.2
공약수로 약분합니다.
단계 8.3
수식을 다시 씁니다.
단계 9
에 대해 미분하면입니다.
단계 10
승 합니다.
단계 11
승 합니다.
단계 12
지수 법칙 을 이용하여 지수를 합칩니다.
단계 13
에 더합니다.
단계 14
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 14.1
에서 를 인수분해합니다.
단계 14.2
에서 를 인수분해합니다.
단계 14.3
에서 를 인수분해합니다.
단계 14.4
로 바꿔 씁니다.
단계 14.5
마이너스 부호를 분수 앞으로 보냅니다.