대수 예제

Trouver la dérivée - d/dx y = natural log of e^(-x)+xe^(-x)
단계 1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.2
에 대해 미분하면입니다.
단계 1.3
를 모두 로 바꿉니다.
단계 2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 3.3
를 모두 로 바꿉니다.
단계 4
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
을 곱합니다.
단계 4.3.2
의 왼쪽으로 이동하기
단계 4.3.3
로 바꿔 씁니다.
단계 5
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 6
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 6.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 6.3
를 모두 로 바꿉니다.
단계 7
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 7.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 7.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.3.1
을 곱합니다.
단계 7.3.2
의 왼쪽으로 이동하기
단계 7.3.3
로 바꿔 씁니다.
단계 7.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 7.5
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.5.1
을 곱합니다.
단계 7.5.2
에 더합니다.
단계 7.5.3
에 더합니다.
단계 7.5.4
을 묶습니다.
단계 7.5.5
을 묶습니다.
단계 8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1.1
을 곱합니다.
단계 8.1.2
에서 를 인수분해합니다.
단계 8.1.3
에서 를 인수분해합니다.
단계 8.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
공약수로 약분합니다.
단계 8.2.2
수식을 다시 씁니다.