문제를 입력하십시오...
대수 예제
단계 1
단계 1.1
꼭짓점의 좌표를 구하려면 절대값 안의 을 이 되게 합니다. 이 경우 입니다.
단계 1.2
수식에서 변수 에 을 대입합니다.
단계 1.3
을 간단히 합니다.
단계 1.3.1
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 1.3.2
식을 간단히 합니다.
단계 1.3.2.1
을 로 바꿔 씁니다.
단계 1.3.2.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.3.3
의 공약수로 약분합니다.
단계 1.3.3.1
공약수로 약분합니다.
단계 1.3.3.2
수식을 다시 씁니다.
단계 1.3.4
지수값을 계산합니다.
단계 1.4
절댓값의 꼭짓점은 입니다.
단계 2
단계 2.1
분수 지수가 있는 식을 근호로 변환합니다.
단계 2.1.1
규칙 을 적용하여 지수 형태를 근호로 다시 씁니다.
단계 2.1.2
모든 수의 승은 밑 자체입니다.
단계 2.2
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
구간 표기:
조건제시법:
구간 표기:
조건제시법:
단계 3
단계 3.1
값인 를 에 대입합니다. 여기에서 점은 입니다.
단계 3.1.1
수식에서 변수 에 을 대입합니다.
단계 3.1.2
결과를 간단히 합니다.
단계 3.1.2.1
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 3.1.2.2
최종 답은 입니다.
단계 3.2
값인 를 에 대입합니다. 여기에서 점은 입니다.
단계 3.2.1
수식에서 변수 에 을 대입합니다.
단계 3.2.2
결과를 간단히 합니다.
단계 3.2.2.1
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 3.2.2.2
1의 모든 거듭제곱은 1입니다.
단계 3.2.2.3
최종 답은 입니다.
단계 3.3
값인 를 에 대입합니다. 여기에서 점은 입니다.
단계 3.3.1
수식에서 변수 에 을 대입합니다.
단계 3.3.2
결과를 간단히 합니다.
단계 3.3.2.1
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 3.3.2.2
최종 답은 입니다.
단계 3.4
절댓값 그래프는 꼭짓점 주변의 점들을 이용하여 그릴 수 있습니다.
단계 4