문제를 입력하십시오...
대수 예제
단계 1
항을 다시 묶습니다.
단계 2
단계 2.1
에서 를 인수분해합니다.
단계 2.2
에서 를 인수분해합니다.
단계 2.3
을 로 바꿔 씁니다.
단계 2.4
에서 를 인수분해합니다.
단계 2.5
에서 를 인수분해합니다.
단계 3
을 로 바꿔 씁니다.
단계 4
로 정의합니다. 식에 나타나는 모든 를 로 바꿉니다.
단계 5
단계 5.1
을 로 바꿔 씁니다.
단계 5.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 5.3
다항식을 다시 씁니다.
단계 5.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 6
를 모두 로 바꿉니다.
단계 7
을 로 바꿔 씁니다.
단계 8
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 9
단계 9.1
에 곱의 미분 법칙을 적용합니다.
단계 9.2
불필요한 괄호를 제거합니다.
단계 10
을 로 바꿔 씁니다.
단계 11
을 로 바꿔 씁니다.
단계 12
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 13
단계 13.1
FOIL 계산법을 이용하여 를 전개합니다.
단계 13.1.1
분배 법칙을 적용합니다.
단계 13.1.2
분배 법칙을 적용합니다.
단계 13.1.3
분배 법칙을 적용합니다.
단계 13.2
동류항끼리 묶고 식을 간단히 합니다.
단계 13.2.1
각 항을 간단히 합니다.
단계 13.2.1.1
에 을 곱합니다.
단계 13.2.1.2
의 왼쪽으로 이동하기
단계 13.2.1.3
을 로 바꿔 씁니다.
단계 13.2.1.4
에 을 곱합니다.
단계 13.2.1.5
에 을 곱합니다.
단계 13.2.2
를 에 더합니다.
단계 13.2.3
를 에 더합니다.
단계 13.3
FOIL 계산법을 이용하여 를 전개합니다.
단계 13.3.1
분배 법칙을 적용합니다.
단계 13.3.2
분배 법칙을 적용합니다.
단계 13.3.3
분배 법칙을 적용합니다.
단계 13.4
동류항끼리 묶고 식을 간단히 합니다.
단계 13.4.1
각 항을 간단히 합니다.
단계 13.4.1.1
에 을 곱합니다.
단계 13.4.1.2
의 왼쪽으로 이동하기
단계 13.4.1.3
을 로 바꿔 씁니다.
단계 13.4.1.4
에 을 곱합니다.
단계 13.4.1.5
에 을 곱합니다.
단계 13.4.2
를 에 더합니다.
단계 13.4.3
를 에 더합니다.
단계 13.5
분배 법칙을 적용합니다.
단계 13.6
에 을 곱합니다.