대수 예제

구간 표기법으로 나타내기 1/2+12/(x^2)>5/x
단계 1
양변에 을 곱합니다.
단계 2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1.1
분배 법칙을 적용합니다.
단계 2.1.1.2
을 묶습니다.
단계 2.1.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1.3.1
에서 를 인수분해합니다.
단계 2.1.1.3.2
공약수로 약분합니다.
단계 2.1.1.3.3
수식을 다시 씁니다.
단계 2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
공약수로 약분합니다.
단계 2.2.1.2
수식을 다시 씁니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
방정식 항의 최소공분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 3.1.2
이 숫자와 변수를 모두 포함하므로 두 단계에 걸쳐 최소공배수를 구합니다. 숫자 부분인 의 최소공배수를 구한 뒤 변수 부분 의 최소공배수를 구합니다.
단계 3.1.3
최소공배수는 주어진 모든 수로 나누어 떨어지는 가장 작은 양수입니다.
1. 각 수의 소인수를 나열합니다.
2. 각 인수가 해당 수에서 나타나는 횟수만큼 각 인수를 곱합니다.
단계 3.1.4
, 이외의 인수를 가지지 않습니다.
는 소수입니다
단계 3.1.5
숫자 은 자신을 약수로 가지지만 오직 한 개의 양의 약수를 가지므로 소수가 아닙니다.
소수가 아님
단계 3.1.6
의 최소공배수는 각 수에 포함된 소인수의 최대 개수만큼 모든 소인수를 곱한 값입니다.
단계 3.1.7
의 인수는 자신입니다.
번 나타납니다.
단계 3.1.8
의 최소공배수는 각 항에 포함된 소인수의 최대 개수 만큼 모든 소인수를 곱한 값입니다.
단계 3.1.9
의 최소공배수는 숫자 부분 에 변수 부분을 곱한 값입니다.
단계 3.2
의 각 항에 을 곱하고 분수를 소거합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 각 항에 을 곱합니다.
단계 3.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.2.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.2.1
공약수로 약분합니다.
단계 3.2.2.1.2.2
수식을 다시 씁니다.
단계 3.2.2.1.3
을 곱합니다.
단계 3.2.2.1.4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 3.2.2.1.5
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.5.1
을 묶습니다.
단계 3.2.2.1.5.2
을 곱합니다.
단계 3.2.2.1.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.6.1
공약수로 약분합니다.
단계 3.2.2.1.6.2
수식을 다시 씁니다.
단계 3.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.3.1
을 곱합니다.
단계 3.3
식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
방정식의 양변에서 를 뺍니다.
단계 3.3.2
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.3.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3.3.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 3.3.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.4.1
와 같다고 둡니다.
단계 3.3.4.2
방정식의 양변에 를 더합니다.
단계 3.3.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.5.1
와 같다고 둡니다.
단계 3.3.5.2
방정식의 양변에 를 더합니다.
단계 3.3.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 4
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 4.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
로 바꿔 씁니다.
단계 4.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 4.2.2.3
플러스 마이너스 입니다.
단계 4.3
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 5
각 근을 사용하여 시험 구간을 만듭니다.
단계 6
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.1.2
원래 부등식에서 로 치환합니다.
단계 6.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
단계 6.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.2.2
원래 부등식에서 로 치환합니다.
단계 6.2.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
단계 6.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.3.2
원래 부등식에서 로 치환합니다.
단계 6.3.3
좌변 이 우변 보다 크지 않으므로 주어진 명제는 거짓입니다.
거짓
거짓
단계 6.4
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.4.2
원래 부등식에서 로 치환합니다.
단계 6.4.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
단계 6.5
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
단계 7
해는 모두 참인 구간으로 이루어져 있습니다.
또는 또는
단계 8
부등식을 구간 표기로 표현합니다.
단계 9