문제를 입력하십시오...
대수 예제
단계 1
단계 1.1
에서 를 인수분해합니다.
단계 1.1.1
에서 를 인수분해합니다.
단계 1.1.2
에서 를 인수분해합니다.
단계 1.1.3
에서 를 인수분해합니다.
단계 1.1.4
에서 를 인수분해합니다.
단계 1.1.5
에서 를 인수분해합니다.
단계 1.2
AC 방법을 이용하여 를 인수분해합니다.
단계 1.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 1.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 2
단계 2.1
에서 를 인수분해합니다.
단계 2.1.1
에서 를 인수분해합니다.
단계 2.1.2
에서 를 인수분해합니다.
단계 2.1.3
에서 를 인수분해합니다.
단계 2.2
을 로 바꿔 씁니다.
단계 2.3
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 3
단계 3.1
에서 를 인수분해합니다.
단계 3.1.1
에서 를 인수분해합니다.
단계 3.1.2
에서 를 인수분해합니다.
단계 3.1.3
에서 를 인수분해합니다.
단계 3.1.4
에서 를 인수분해합니다.
단계 3.1.5
에서 를 인수분해합니다.
단계 3.2
AC 방법을 이용하여 를 인수분해합니다.
단계 3.2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 4
단계 4.1
의 공약수로 약분합니다.
단계 4.1.1
에서 를 인수분해합니다.
단계 4.1.2
에서 를 인수분해합니다.
단계 4.1.3
공약수로 약분합니다.
단계 4.1.4
수식을 다시 씁니다.
단계 4.2
의 공약수로 약분합니다.
단계 4.2.1
에서 를 인수분해합니다.
단계 4.2.2
공약수로 약분합니다.
단계 4.2.3
수식을 다시 씁니다.
단계 4.3
와 을 묶습니다.
단계 4.4
및 의 공약수로 약분합니다.
단계 4.4.1
에서 를 인수분해합니다.
단계 4.4.2
공약수로 약분합니다.
단계 4.4.2.1
에서 를 인수분해합니다.
단계 4.4.2.2
공약수로 약분합니다.
단계 4.4.2.3
수식을 다시 씁니다.
단계 4.5
의 공약수로 약분합니다.
단계 4.5.1
공약수로 약분합니다.
단계 4.5.2
수식을 다시 씁니다.
단계 4.6
분배 법칙을 적용합니다.
단계 5
단계 5.1
와 을 묶습니다.
단계 5.2
지수를 더하여 에 을 곱합니다.
단계 5.2.1
에 을 곱합니다.
단계 5.2.1.1
를 승 합니다.
단계 5.2.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.2.2
를 에 더합니다.
단계 6
단계 6.1
에서 를 인수분해합니다.
단계 6.2
공약수로 약분합니다.
단계 6.3
수식을 다시 씁니다.
단계 7
단계 7.1
의 왼쪽으로 이동하기
단계 7.2
을 로 바꿔 씁니다.
단계 8
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 9
단계 9.1
와 을 묶습니다.
단계 9.2
공통분모를 가진 분자끼리 묶습니다.
단계 10
단계 10.1
에서 를 인수분해합니다.
단계 10.1.1
에서 를 인수분해합니다.
단계 10.1.2
에서 를 인수분해합니다.
단계 10.1.3
에서 를 인수분해합니다.
단계 10.2
에 을 곱합니다.