대수 예제

Résoudre pour x x = square root of 1-x
단계 1
근호가 방정식의 우변에 있으므로 양변의 위치를 바꿔 방정식의 좌변에 오도록 합니다.
단계 2
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 3
방정식의 각 변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.1.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1.2.1
공약수로 약분합니다.
단계 3.2.1.1.2.2
수식을 다시 씁니다.
단계 3.2.1.2
간단히 합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
방정식의 양변에서 를 뺍니다.
단계 4.2
근의 공식을 이용해 방정식의 해를 구합니다.
단계 4.3
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 4.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1.1
승 합니다.
단계 4.4.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1.2.1
을 곱합니다.
단계 4.4.1.2.2
을 곱합니다.
단계 4.4.1.3
에 더합니다.
단계 4.4.2
을 곱합니다.
단계 4.4.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 4.5
두 해를 모두 조합하면 최종 답이 됩니다.
단계 5
이 참이 되지 않게 하는 해를 버립니다.
단계 6
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: