대수 예제

간단히 정리하기 (x/9-1/3)/(1/(x^2)-1/9)
단계 1
분수의 분자와 분모에 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을 곱합니다.
단계 1.2
조합합니다.
단계 2
분배 법칙을 적용합니다.
단계 3
소거하고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
에서 를 인수분해합니다.
단계 3.1.2
공약수로 약분합니다.
단계 3.1.3
수식을 다시 씁니다.
단계 3.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1.1
승 합니다.
단계 3.2.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.2.2
에 더합니다.
단계 3.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.3.2
에서 를 인수분해합니다.
단계 3.3.3
공약수로 약분합니다.
단계 3.3.4
수식을 다시 씁니다.
단계 3.4
을 곱합니다.
단계 3.5
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
에서 를 인수분해합니다.
단계 3.5.2
공약수로 약분합니다.
단계 3.5.3
수식을 다시 씁니다.
단계 3.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
의 마이너스 부호를 분자로 이동합니다.
단계 3.6.2
에서 를 인수분해합니다.
단계 3.6.3
공약수로 약분합니다.
단계 3.6.4
수식을 다시 씁니다.
단계 4
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
에서 를 인수분해합니다.
단계 4.2
에서 를 인수분해합니다.
단계 4.3
에서 를 인수분해합니다.
단계 5
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 왼쪽으로 이동하기
단계 5.2
로 바꿔 씁니다.
단계 5.3
인수분해된 형태로 를 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
로 바꿔 씁니다.
단계 5.3.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 6
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
에서 를 인수분해합니다.
단계 6.1.2
로 바꿔 씁니다.
단계 6.1.3
에서 를 인수분해합니다.
단계 6.1.4
항을 다시 정렬합니다.
단계 6.1.5
공약수로 약분합니다.
단계 6.1.6
수식을 다시 씁니다.
단계 6.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
의 왼쪽으로 이동하기
단계 6.2.2
마이너스 부호를 분수 앞으로 보냅니다.