問題を入力...
三角関数 例
ステップ 1
の被開数をより小さいとして、式が未定義である場所を求めます。
ステップ 2
ステップ 2.1
不等式を方程式に変換します。
ステップ 2.2
群による因数分解。
ステップ 2.2.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 2.2.1.1
をで因数分解します。
ステップ 2.2.1.2
をプラスに書き換える
ステップ 2.2.1.3
分配則を当てはめます。
ステップ 2.2.2
各群から最大公約数を因数分解します。
ステップ 2.2.2.1
前の2項と後ろの2項をまとめます。
ステップ 2.2.2.2
各群から最大公約数を因数分解します。
ステップ 2.2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
についてを解きます。
ステップ 2.4.2.1
方程式の両辺にを足します。
ステップ 2.4.2.2
の各項をで割り、簡約します。
ステップ 2.4.2.2.1
の各項をで割ります。
ステップ 2.4.2.2.2
左辺を簡約します。
ステップ 2.4.2.2.2.1
の共通因数を約分します。
ステップ 2.4.2.2.2.1.1
共通因数を約分します。
ステップ 2.4.2.2.2.1.2
をで割ります。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺にを足します。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 2.7
各根を利用して検定区間を作成します。
ステップ 2.8
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
ステップ 2.8.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.8.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.1.2
を元の不等式ので置き換えます。
ステップ 2.8.1.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 2.8.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.8.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.2.2
を元の不等式ので置き換えます。
ステップ 2.8.2.3
左辺は右辺より小さいです。つまり、与えられた文は常に真です。
True
True
ステップ 2.8.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.8.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.8.3.2
を元の不等式ので置き換えます。
ステップ 2.8.3.3
左辺は右辺より小さくありません。つまり、与えられた文は偽です。
False
False
ステップ 2.8.4
区間を比較して、どちらが元の不等式を満たすか判定します。
偽
真
偽
偽
真
偽
ステップ 2.9
解はすべての真の区間からなります。
ステップ 3
分母がに等しい、平方根の引数がより小さい、または対数の引数が以下の場合、方程式は未定義です。
ステップ 4