問題を入力...
三角関数 例
ステップ 1
ステップ 1.1
の値を求めます。
ステップ 1.2
分子を簡約します。
ステップ 1.2.1
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。
ステップ 1.2.2
の厳密値はです。
ステップ 1.3
分子に分母の逆数を掛けます。
ステップ 1.4
を掛けます。
ステップ 1.4.1
にをかけます。
ステップ 1.4.2
にをかけます。
ステップ 2
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
ステップ 2.3
最小公倍数はすべての数を割り切る最小の正の数です。
1. 各数値の素因数を記入してください。
2. 各因数に、いずれかの値で発生する最大回数をかけてください。
ステップ 2.4
数は、それ自身である正の因数を1つだけもつので、素数ではありません。
素数ではありません
ステップ 2.5
の素因数はです。
ステップ 2.5.1
にはとの因数があります。
ステップ 2.5.2
にはとの因数があります。
ステップ 2.5.3
にはとの因数があります。
ステップ 2.5.4
にはとの因数があります。
ステップ 2.5.5
にはとの因数があります。
ステップ 2.6
を掛けます。
ステップ 2.6.1
にをかけます。
ステップ 2.6.2
にをかけます。
ステップ 2.6.3
にをかけます。
ステップ 2.6.4
にをかけます。
ステップ 2.6.5
にをかけます。
ステップ 2.7
の因数はそのものです。
は回発生します。
ステップ 2.8
の最小公倍数は、すべての素因数がいずれかの項に出現する回数の最大数を掛けた結果です。
ステップ 2.9
の最小公倍数は数値部分に変数部分を掛けたものです。
ステップ 3
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
積の可換性を利用して書き換えます。
ステップ 3.2.2
を掛けます。
ステップ 3.2.2.1
とをまとめます。
ステップ 3.2.2.2
にをかけます。
ステップ 3.2.3
の共通因数を約分します。
ステップ 3.2.3.1
共通因数を約分します。
ステップ 3.2.3.2
式を書き換えます。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
の共通因数を約分します。
ステップ 3.3.1.1
をで因数分解します。
ステップ 3.3.1.2
共通因数を約分します。
ステップ 3.3.1.3
式を書き換えます。
ステップ 4
方程式をとして書き換えます。