微分積分学準備 例

極限を求める nが(n!)/(n^n)の8に近づく極限
ステップ 1
に近づいたら、極限で極限の商の法則を利用して極限を分割します。
ステップ 2
対数の性質を利用して極限を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
に書き換えます。
ステップ 2.2
を対数の外に移動させて、を展開します。
ステップ 3
極限を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
指数に極限を移動させます。
ステップ 3.2
に近づいたら、極限で極限の法則の積を利用して極限を分割します。
ステップ 3.3
対数の内側に極限を移動させます。
ステップ 4
すべてのに代入し、極限値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
に代入し、の極限値を求めます。
ステップ 4.2
に展開します。
ステップ 4.3
を掛けます。
タップして手順をさらに表示してください…
ステップ 4.3.1
をかけます。
ステップ 4.3.2
をかけます。
ステップ 4.3.3
をかけます。
ステップ 4.3.4
をかけます。
ステップ 4.3.5
をかけます。
ステップ 4.3.6
をかけます。
ステップ 4.3.7
をかけます。
ステップ 4.4
に代入し、の極限値を求めます。
ステップ 4.5
に代入し、の極限値を求めます。
ステップ 5
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1.1
対数の中のを移動させてを簡約します。
ステップ 5.1.2
指数関数と対数関数は逆関数です。
ステップ 5.1.3
乗します。
ステップ 5.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.1
で因数分解します。
ステップ 5.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
で因数分解します。
ステップ 5.2.2.2
共通因数を約分します。
ステップ 5.2.2.3
式を書き換えます。
ステップ 6
結果は複数の形で表すことができます。
完全形:
10進法形式: