問題を入力...
微分積分学準備 例
ステップ 1
ステップ 1.1
対数の積の性質を使います、です。
ステップ 1.2
分配則を当てはめます。
ステップ 1.3
式を簡約します。
ステップ 1.3.1
にをかけます。
ステップ 1.3.2
をの左に移動させます。
ステップ 2
ステップ 2.1
とをまとめます。
ステップ 2.2
をに書き換えます。
ステップ 2.3
を対数の外に移動させて、を展開します。
ステップ 2.4
の共通因数を約分します。
ステップ 2.4.1
共通因数を約分します。
ステップ 2.4.2
をで割ります。
ステップ 3
方程式を等しくするために、両辺の対数の引数が等しくなる必要があります。
ステップ 4
ステップ 4.1
方程式の両辺からを引きます。
ステップ 4.2
二次方程式の解の公式を利用して解を求めます。
ステップ 4.3
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 4.4
簡約します。
ステップ 4.4.1
分子を簡約します。
ステップ 4.4.1.1
を乗します。
ステップ 4.4.1.2
を掛けます。
ステップ 4.4.1.2.1
にをかけます。
ステップ 4.4.1.2.2
にをかけます。
ステップ 4.4.1.3
とをたし算します。
ステップ 4.4.1.4
をに書き換えます。
ステップ 4.4.1.4.1
をで因数分解します。
ステップ 4.4.1.4.2
をに書き換えます。
ステップ 4.4.1.5
累乗根の下から項を取り出します。
ステップ 4.4.2
にをかけます。
ステップ 4.4.3
を簡約します。
ステップ 4.5
最終的な答えは両方の解の組み合わせです。
ステップ 5
が真にならない解を除外します。
ステップ 6
結果は複数の形で表すことができます。
完全形:
10進法形式: