微分積分学準備 例

x切片とy切片を求める 6x+2y=12
ステップ 1
x切片を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
x切片を求めるために、に代入しを解きます。
ステップ 1.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
をかけます。
ステップ 1.2.1.2
をたし算します。
ステップ 1.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
の各項をで割ります。
ステップ 1.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.2.2.2.1.1
共通因数を約分します。
ステップ 1.2.2.2.1.2
で割ります。
ステップ 1.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.2.3.1
で割ります。
ステップ 1.3
点形式のx切片です。
x切片:
x切片:
ステップ 2
y切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
y切片を求めるために、に代入しを解きます。
ステップ 2.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
をかけます。
ステップ 2.2.1.2
をたし算します。
ステップ 2.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
の各項をで割ります。
ステップ 2.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.2.1.2
で割ります。
ステップ 2.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.3.1
で割ります。
ステップ 2.3
点形式のy切片です。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:
y切片:
ステップ 4