問題を入力...
微分積分学準備 例
ステップ 1
の被開数を以上として、式が定義である場所を求めます。
ステップ 2
ステップ 2.1
各因数をに等しくして解くことで、式が負から正に切り替わるすべての値を求めます。
ステップ 2.2
方程式の両辺にを足します。
ステップ 2.3
の各項をで割り、簡約します。
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
ステップ 2.3.2.1
の共通因数を約分します。
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
をで割ります。
ステップ 2.3.3
右辺を簡約します。
ステップ 2.3.3.1
をで割ります。
ステップ 2.4
の定義域を求めます。
ステップ 2.4.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 2.4.2
について解きます。
ステップ 2.4.2.1
方程式の両辺にを足します。
ステップ 2.4.2.2
の各項をで割り、簡約します。
ステップ 2.4.2.2.1
の各項をで割ります。
ステップ 2.4.2.2.2
左辺を簡約します。
ステップ 2.4.2.2.2.1
の共通因数を約分します。
ステップ 2.4.2.2.2.1.1
共通因数を約分します。
ステップ 2.4.2.2.2.1.2
をで割ります。
ステップ 2.4.2.2.3
右辺を簡約します。
ステップ 2.4.2.2.3.1
をで割ります。
ステップ 2.4.3
定義域は式が定義になるのすべての値です。
ステップ 2.5
解はすべての真の区間からなります。
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
ステップ 4.1
方程式の両辺にを足します。
ステップ 4.2
の各項をで割り、簡約します。
ステップ 4.2.1
の各項をで割ります。
ステップ 4.2.2
左辺を簡約します。
ステップ 4.2.2.1
の共通因数を約分します。
ステップ 4.2.2.1.1
共通因数を約分します。
ステップ 4.2.2.1.2
をで割ります。
ステップ 4.2.3
右辺を簡約します。
ステップ 4.2.3.1
をで割ります。
ステップ 5
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 6