็ทšๅฝขไปฃๆ•ฐ ไพ‹

逆行列を使用して解く x-2y+x=0 , y-3z=-1 , 2y+5z=-2
, ,
ใ‚นใƒ†ใƒƒใƒ— 1
้€ฃ็ซ‹ๆ–น็จ‹ๅผใ‹ใ‚‰ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
ไฟ‚ๆ•ฐ่กŒๅˆ—ใฎ้€†ใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1
Find the determinant.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.1
Consider the corresponding sign chart.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.3
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.4
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.5
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.6
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.7
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.8
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 2.1.1.9
Add the terms together.
ใ‚นใƒ†ใƒƒใƒ— 2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.4
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.4.1
่กŒๅˆ—ใฎ่กŒๅˆ—ๅผใฏๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆๆฑ‚ใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.4.2
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.4.2.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.4.2.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.4.2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.4.2.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.5
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.1.5.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.5.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.1.5.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.2
Since the determinant is non-zero, the inverse exists.
ใ‚นใƒ†ใƒƒใƒ— 2.3
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
ใ‚นใƒ†ใƒƒใƒ— 2.4
็ธฎๅฐ่กŒใฎ้šŽๆฎตๅฝขใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.1
Multiply each element of by to make the entry at a .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.1.1
Multiply each element of by to make the entry at a .
ใ‚นใƒ†ใƒƒใƒ— 2.4.1.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.2
Perform the row operation to make the entry at a .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.1
Perform the row operation to make the entry at a .
ใ‚นใƒ†ใƒƒใƒ— 2.4.2.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.3
Multiply each element of by to make the entry at a .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.3.1
Multiply each element of by to make the entry at a .
ใ‚นใƒ†ใƒƒใƒ— 2.4.3.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.4
Perform the row operation to make the entry at a .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.4.1
Perform the row operation to make the entry at a .
ใ‚นใƒ†ใƒƒใƒ— 2.4.4.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.4.5
Perform the row operation to make the entry at a .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 2.4.5.1
Perform the row operation to make the entry at a .
ใ‚นใƒ†ใƒƒใƒ— 2.4.5.2
ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2.5
The right half of the reduced row echelon form is the inverse.
ใ‚นใƒ†ใƒƒใƒ— 3
่กŒๅˆ—ๅผใฎไธก่พบใซ้€†่กŒๅˆ—ใ‚’ๅทฆๆŽ›ใ‘ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
้€†่กŒๅˆ—ใ‚’ๆŽ›ใ‘ใŸ่กŒๅˆ—ใฏๅธธใซใจ็ญ‰ใ—ใใชใ‚Šใพใ™ใ€‚ใงใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5
ใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
ใ‚นใƒ†ใƒƒใƒ— 5.2
1็•ช็›ฎใฎ่กŒๅˆ—ใฎๅ„่กŒใจ2็•ช็›ฎใฎ่กŒๅˆ—ใฎๅ„ๅˆ—ใ‚’ๆŽ›ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.3
ใ™ในใฆใฎๅผใ‚’ๆŽ›ใ‘ใฆใ€่กŒๅˆ—ใฎๅ„่ฆ็ด ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6
ๅทฆ่พบใจๅณ่พบใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7
่งฃใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚