問題を入力...
็ทๅฝขไปฃๆฐ ไพ
, ,
ในใใใ 1
้ฃ็ซๆน็จๅผใใใๆฑใใพใใ
ในใใใ 2
ในใใใ 2.1
Find the determinant.
ในใใใ 2.1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
ในใใใ 2.1.1.1
Consider the corresponding sign chart.
ในใใใ 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ในใใใ 2.1.1.3
The minor for is the determinant with row and column deleted.
ในใใใ 2.1.1.4
Multiply element by its cofactor.
ในใใใ 2.1.1.5
The minor for is the determinant with row and column deleted.
ในใใใ 2.1.1.6
Multiply element by its cofactor.
ในใใใ 2.1.1.7
The minor for is the determinant with row and column deleted.
ในใใใ 2.1.1.8
Multiply element by its cofactor.
ในใใใ 2.1.1.9
Add the terms together.
ในใใใ 2.1.2
ใซใใใใพใใ
ในใใใ 2.1.3
ใซใใใใพใใ
ในใใใ 2.1.4
ใฎๅคใๆฑใใพใใ
ในใใใ 2.1.4.1
่กๅใฎ่กๅๅผใฏๅ
ฌๅผใๅฉ็จใใฆๆฑใใใใจใใงใใพใใ
ในใใใ 2.1.4.2
่กๅๅผใ็ฐก็ดใใพใใ
ในใใใ 2.1.4.2.1
ๅ้
ใ็ฐก็ดใใพใใ
ในใใใ 2.1.4.2.1.1
ใซใใใใพใใ
ในใใใ 2.1.4.2.1.2
ใซใใใใพใใ
ในใใใ 2.1.4.2.2
ใจใใใ็ฎใใพใใ
ในใใใ 2.1.5
่กๅๅผใ็ฐก็ดใใพใใ
ในใใใ 2.1.5.1
ใซใใใใพใใ
ในใใใ 2.1.5.2
ใจใใใ็ฎใใพใใ
ในใใใ 2.1.5.3
ใจใใใ็ฎใใพใใ
ในใใใ 2.2
Since the determinant is non-zero, the inverse exists.
ในใใใ 2.3
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
ในใใใ 2.4
็ธฎๅฐ่กใฎ้ๆฎตๅฝขใๆฑใใพใใ
ในใใใ 2.4.1
Multiply each element of by to make the entry at a .
ในใใใ 2.4.1.1
Multiply each element of by to make the entry at a .
ในใใใ 2.4.1.2
ใ็ฐก็ดใใพใใ
ในใใใ 2.4.2
Perform the row operation to make the entry at a .
ในใใใ 2.4.2.1
Perform the row operation to make the entry at a .
ในใใใ 2.4.2.2
ใ็ฐก็ดใใพใใ
ในใใใ 2.4.3
Multiply each element of by to make the entry at a .
ในใใใ 2.4.3.1
Multiply each element of by to make the entry at a .
ในใใใ 2.4.3.2
ใ็ฐก็ดใใพใใ
ในใใใ 2.4.4
Perform the row operation to make the entry at a .
ในใใใ 2.4.4.1
Perform the row operation to make the entry at a .
ในใใใ 2.4.4.2
ใ็ฐก็ดใใพใใ
ในใใใ 2.4.5
Perform the row operation to make the entry at a .
ในใใใ 2.4.5.1
Perform the row operation to make the entry at a .
ในใใใ 2.4.5.2
ใ็ฐก็ดใใพใใ
ในใใใ 2.5
The right half of the reduced row echelon form is the inverse.
ในใใใ 3
่กๅๅผใฎไธก่พบใซ้่กๅใๅทฆๆใใใพใใ
ในใใใ 4
้่กๅใๆใใ่กๅใฏๅธธใซใจ็ญใใใชใใพใใใงใใ
ในใใใ 5
ในใใใ 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
ในใใใ 5.2
1็ช็ฎใฎ่กๅใฎๅ่กใจ2็ช็ฎใฎ่กๅใฎๅๅใๆใใพใใ
ในใใใ 5.3
ใในใฆใฎๅผใๆใใฆใ่กๅใฎๅ่ฆ็ด ใ็ฐก็ดใใพใใ
ในใใใ 6
ๅทฆ่พบใจๅณ่พบใ็ฐก็ดใใพใใ
ในใใใ 7
่งฃใๆฑใใพใใ