問題を入力...
垎åįŠå äž
ãšããã 1
ãéĸæ°ã§æ¸ããžãã
ãšããã 2
ãšããã 2.1
垎åããžãã
ãšããã 2.1.1
įˇååã§ã¯ããŽãĢéĸããįŠåã¯ã§ãã
ãšããã 2.1.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 2.2
ãŽå¤ãæąããžãã
ãšããã 2.2.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 2.2.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 2.2.3
ãĢããããžãã
ãšããã 2.3
åŽæ°ãŽčĻåãäŊŋãŖãĻ垎åããžãã
ãšããã 2.3.1
ã¯ãĢã¤ããĻåŽæ°ãĒãŽã§ããĢã¤ããĻãŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 2.3.2
ã¨ãããįŽããžãã
ãšããã 3
ãšããã 3.1
įˇååã§ã¯ããŽãĢéĸããįŠåã¯ã§ãã
ãšããã 3.2
ãŽå¤ãæąããžãã
ãšããã 3.2.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 3.2.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 3.2.3
ãĢããããžãã
ãšããã 3.3
åŽæ°ãŽčĻåãäŊŋãŖãĻ垎åããžãã
ãšããã 3.3.1
ã¯ãĢã¤ããĻåŽæ°ãĒãŽã§ããĢã¤ããĻãŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 3.3.2
ã¨ãããįŽããžãã
ãšããã 4
垎åäŋæ°ãã¨įããããåŧãč§ŖããĻéĸæ°ãŽæĨĩ大å¤ã¨æå°å¤ãæąããžãã
ãšããã 5
ãšããã 5.1
䏿ŦĄå°éĸæ°ãæąããžãã
ãšããã 5.1.1
垎åããžãã
ãšããã 5.1.1.1
įˇååã§ã¯ããŽãĢéĸããįŠåã¯ã§ãã
ãšããã 5.1.1.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 5.1.2
ãŽå¤ãæąããžãã
ãšããã 5.1.2.1
ã¯ãĢ寞ããĻåŽæ°ãĒãŽã§ããĢ寞ãããŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 5.1.2.2
ãŽã¨ããã¯ã§ããã¨ãããšãäšåãäŊŋãŖãĻ垎åããžãã
ãšããã 5.1.2.3
ãĢããããžãã
ãšããã 5.1.3
åŽæ°ãŽčĻåãäŊŋãŖãĻ垎åããžãã
ãšããã 5.1.3.1
ã¯ãĢã¤ããĻåŽæ°ãĒãŽã§ããĢã¤ããĻãŽåžŽåäŋæ°ã¯ã§ãã
ãšããã 5.1.3.2
ã¨ãããįŽããžãã
ãšããã 5.2
ãĢéĸãããŽä¸æŦĄå°éĸæ°ã¯ã§ãã
ãšããã 6
ãšããã 6.1
䏿ŦĄå°éĸæ°ããĢįããããžãã
ãšããã 6.2
æšį¨åŧãŽä¸ĄčžēãĢãčļŗããžãã
ãšããã 6.3
ãŽåé
ãã§å˛ããį°Ąį´ããžãã
ãšããã 6.3.1
ãŽåé
ãã§å˛ããžãã
ãšããã 6.3.2
åˇĻčžēãį°Ąį´ããžãã
ãšããã 6.3.2.1
ãŽå
ąéå æ°ãį´åããžãã
ãšããã 6.3.2.1.1
å
ąéå æ°ãį´åããžãã
ãšããã 6.3.2.1.2
ãã§å˛ããžãã
ãšããã 6.3.3
åŗčžēãį°Ąį´ããžãã
ãšããã 6.3.3.1
ãã§å˛ããžãã
ãšããã 6.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ãšããã 6.5
ãŽããããŽæ šã¯ã§ãã
ãšããã 6.6
åŽå
¨č§Ŗã¯ãč§ŖãŽæŖã¨č˛ ãŽé¨åãŽä¸ĄæšãŽč¨įŽįĩæã§ãã
ãšããã 6.6.1
ãžãããŽæŖãŽæ°ãåŠį¨ãã1įĒįŽãŽč§Ŗãæąããžãã
ãšããã 6.6.2
æŦĄãĢããŽč˛ ãŽå¤ãåŠį¨ãã2įĒįŽãŽč§Ŗãæąããžãã
ãšããã 6.6.3
åŽå
¨č§Ŗã¯ãč§ŖãŽæŖã¨č˛ ãŽé¨åãŽä¸ĄæšãŽč¨įŽįĩæã§ãã
ãšããã 7
ãšããã 7.1
åŧãŽåŽįžŠåã¯ãåŧãæĒåŽįžŠãŽå ´åãé¤ããããšãĻãŽåŽæ°ã§ããããŽå ´åãåŧãæĒåŽįžŠãĢãĒããããĒåŽæ°ã¯ãããžããã
ãšããã 8
å¤ãæąããč¨įįšã§ãã
ãšããã 9
ã§äēæŦĄå°éĸæ°ãŽå¤ãæąããžããäēæŦĄå°éĸæ°ãæŖãŽã¨ããããŽå¤ãæĨĩå°å¤ã§ããäēæŦĄå°éĸæ°ãč˛ ãŽæãããŽå¤ãæĨĩ大å¤ã§ãã
ãšããã 10
ãšããã 10.1
1ãŽããšãĻãŽæ°ãŽį´¯äšã¯1ã§ãã
ãšããã 10.2
ãĢããããžãã
ãšããã 11
ã¯äēæŦĄå°éĸæ°ãŽå¤ãæŖã§ãããããæĨĩå°å¤ã§ããããã¯äēæŦĄå°éĸæ°ããšãã¨åŧã°ããžãã
ã¯æĨĩå°å¤ã§ã
ãšããã 12
ãšããã 12.1
åŧãŽå¤æ°ãã§įŊŽæããžãã
ãšããã 12.2
įĩæãį°Ąį´ããžãã
ãšããã 12.2.1
åé
ãį°Ąį´ããžãã
ãšããã 12.2.1.1
1ãŽããšãĻãŽæ°ãŽį´¯äšã¯1ã§ãã
ãšããã 12.2.1.2
ãĢããããžãã
ãšããã 12.2.2
čļŗãįŽã¨åŧãįŽã§į°Ąį´ããžãã
ãšããã 12.2.2.1
ãããåŧããžãã
ãšããã 12.2.2.2
ã¨ãããįŽããžãã
ãšããã 12.2.3
æįĩįãĒįãã¯ã§ãã
ãšããã 13
ã§äēæŦĄå°éĸæ°ãŽå¤ãæąããžããäēæŦĄå°éĸæ°ãæŖãŽã¨ããããŽå¤ãæĨĩå°å¤ã§ããäēæŦĄå°éĸæ°ãč˛ ãŽæãããŽå¤ãæĨĩ大å¤ã§ãã
ãšããã 14
ãšããã 14.1
ãäšããžãã
ãšããã 14.2
ãĢããããžãã
ãšããã 15
ã¯äēæŦĄå°éĸæ°ãŽå¤ãč˛ ã§ãããããæĨĩ大å¤ã§ããããã¯äēæŦĄå°éĸæ°ããšãã¨åŧã°ããžãã
ã¯æĨĩ大å¤ã§ã
ãšããã 16
ãšããã 16.1
åŧãŽå¤æ°ãã§įŊŽæããžãã
ãšããã 16.2
įĩæãį°Ąį´ããžãã
ãšããã 16.2.1
åé
ãį°Ąį´ããžãã
ãšããã 16.2.1.1
ãäšããžãã
ãšããã 16.2.1.2
ãĢããããžãã
ãšããã 16.2.2
æ°ãå ããĻį°Ąį´ããžãã
ãšããã 16.2.2.1
ã¨ãããįŽããžãã
ãšããã 16.2.2.2
ã¨ãããįŽããžãã
ãšããã 16.2.3
æįĩįãĒįãã¯ã§ãã
ãšããã 17
ãŽæĨĩå¤ã§ãã
ã¯æĨĩå°å¤ã§ã
ã¯æĨĩ大å¤ã§ã
ãšããã 18