微分積分 例

導関数を用いて増減する場所を求める e^(4x)
ステップ 1
を関数で書きます。
ステップ 2
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 2.1.1
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 2.1.1.1
連鎖律を当てはめるために、とします。
ステップ 2.1.1.2
=のとき、であるという指数法則を使って微分します。
ステップ 2.1.1.3
のすべての発生をで置き換えます。
ステップ 2.1.2
微分します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 2.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 2.1.2.3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.3.1
をかけます。
ステップ 2.1.2.3.2
の左に移動させます。
ステップ 2.2
に関するの一次導関数はです。
ステップ 3
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 3.1
一次導関数をに等しくします。
ステップ 3.2
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 3.3
が未定義なので、方程式は解くことができません。
未定義
ステップ 3.4
の解はありません
解がありません
解がありません
ステップ 4
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません
ステップ 5
微分係数または未定義にする点はありません。の増加・減少を確認する区間はです。
ステップ 6
区間からなどの任意の数を微分係数に代入し、結果が負か正か確認します。結果が負ならば、グラフは区間で減少します。結果が正ならば、グラフは区間で増加しています。
タップして手順をさらに表示してください…
ステップ 6.1
式の変数で置換えます。
ステップ 6.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
をかけます。
ステップ 6.2.2
最終的な答えはです。
ステップ 7
に代入した結果はです。これは正なので、グラフは区間で増加します。
なのでで増加
ステップ 8
区間で増加することは、関数が常に増加しているという意味です。
常に増加
ステップ 9