微分積分 例

ロピタルの定理を利用し値を求める x^3-8x^2-xの立方根のxがinfinityに近づくときの極限
ステップ 1
掛け算して分子を有理化します。
ステップ 2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
分配法則(FOIL法)を使って分子を展開します。
ステップ 2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
からを引きます。
ステップ 2.2.2
をたし算します。
ステップ 2.2.3
からを引きます。
ステップ 2.2.4
をたし算します。
ステップ 3
極限を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1.1.1
で因数分解します。
ステップ 3.1.1.2
で因数分解します。
ステップ 3.1.1.3
で因数分解します。
ステップ 3.1.2
に書き換えます。
ステップ 3.1.3
積の法則をに当てはめます。
ステップ 3.1.4
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 3.1.4.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.1.4.2
をかけます。
ステップ 3.1.5
に書き換えます。
タップして手順をさらに表示してください…
ステップ 3.1.5.1
を因数分解します。
ステップ 3.1.5.2
に書き換えます。
ステップ 3.1.5.3
括弧を付けます。
ステップ 3.1.6
累乗根の下から項を取り出します。
ステップ 3.1.7
乗します。
ステップ 3.1.8
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1.8.1
で因数分解します。
ステップ 3.1.8.2
で因数分解します。
ステップ 3.1.8.3
で因数分解します。
ステップ 3.1.9
を掛けます。
タップして手順をさらに表示してください…
ステップ 3.1.9.1
をかけます。
ステップ 3.1.9.2
をかけます。
ステップ 3.1.10
積の法則をに当てはめます。
ステップ 3.1.11
乗します。
ステップ 3.1.12
をかけます。
ステップ 3.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 4
分子と分母を分母のの最大べき乗で割ります。
ステップ 5
項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.1.1
共通因数を約分します。
ステップ 5.1.2
式を書き換えます。
ステップ 5.2
各項を簡約します。
ステップ 5.3
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 5.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.1.1
共通因数を約分します。
ステップ 5.3.1.2
式を書き換えます。
ステップ 5.3.2
分数の前に負数を移動させます。
ステップ 5.4
に書き換えます。
ステップ 6
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 6.1
分配則を当てはめます。
ステップ 6.2
分配則を当てはめます。
ステップ 6.3
分配則を当てはめます。
ステップ 7
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 7.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 7.1.1
をかけます。
ステップ 7.1.2
をかけます。
ステップ 7.1.3
をかけます。
ステップ 7.1.4
を掛けます。
タップして手順をさらに表示してください…
ステップ 7.1.4.1
をかけます。
ステップ 7.1.4.2
をかけます。
ステップ 7.1.4.3
をかけます。
ステップ 7.1.4.4
をかけます。
ステップ 7.1.4.5
乗します。
ステップ 7.1.4.6
乗します。
ステップ 7.1.4.7
べき乗則を利用して指数を組み合わせます。
ステップ 7.1.4.8
をたし算します。
ステップ 7.2
からを引きます。
ステップ 8
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 8.1
を掛けます。
タップして手順をさらに表示してください…
ステップ 8.1.1
をまとめます。
ステップ 8.1.2
をかけます。
ステップ 8.2
分数の前に負数を移動させます。
ステップ 9
分配則を当てはめます。
ステップ 10
簡約します。
タップして手順をさらに表示してください…
ステップ 10.1
をかけます。
ステップ 10.2
積の可換性を利用して書き換えます。
ステップ 10.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 10.3.1
で因数分解します。
ステップ 10.3.2
共通因数を約分します。
ステップ 10.3.3
式を書き換えます。
ステップ 11
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 11.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 11.1.1
で因数分解します。
ステップ 11.1.2
共通因数を約分します。
ステップ 11.1.3
式を書き換えます。
ステップ 11.2
をかけます。
ステップ 12
分配則を当てはめます。
ステップ 13
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 13.1
をかけます。
タップして手順をさらに表示してください…
ステップ 13.1.1
乗します。
ステップ 13.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 13.2
をたし算します。
ステップ 14
の左に移動させます。
ステップ 15
分子が実数に近づき、分母が有界でないので、分数に近づきます。
ステップ 16
をかけます。