問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
の値を求めます。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
=のとき、はであるという指数法則を使って微分します。
ステップ 1.1.3
の値を求めます。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.3.2.2
=のとき、はであるという指数法則を使って微分します。
ステップ 1.1.3.2.3
のすべての発生をで置き換えます。
ステップ 1.1.3.3
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.4
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.5
にをかけます。
ステップ 1.1.3.6
をの左に移動させます。
ステップ 1.1.3.7
をに書き換えます。
ステップ 1.1.4
簡約します。
ステップ 1.1.4.1
項を並べ替えます。
ステップ 1.1.4.2
の因数を並べ替えます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をに等しくします。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません