微分積分 例

変曲点を求める g(x)=2x^4+12x^2-10
ステップ 1
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
総和則では、に関する積分はです。
ステップ 1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3
をかけます。
ステップ 1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.3.3
をかけます。
ステップ 1.1.4
定数の規則を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.4.1
について定数なので、についての微分係数はです。
ステップ 1.1.4.2
をたし算します。
ステップ 1.2
二次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.1
総和則では、に関する積分はです。
ステップ 1.2.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.2.3
をかけます。
ステップ 1.2.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.2.3.3
をかけます。
ステップ 1.3
に関するの二次導関数はです。
ステップ 2
二次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
二次導関数をに等しくします。
ステップ 2.2
方程式の両辺からを引きます。
ステップ 2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
の各項をで割ります。
ステップ 2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
共通因数を約分します。
ステップ 2.3.2.1.2
で割ります。
ステップ 2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.3.1
で割ります。
ステップ 2.4
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.5
に書き換えます。
ステップ 2.6
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.6.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.6.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.6.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3
二次導関数がに等しくなるような値が見つかりません。
変曲点がありません