微分積分 例

積分を求める (6x)/(2^(4x^2))
ステップ 1
に対して定数なので、を積分の外に移動させます。
ステップ 2
式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
の指数を否定し、分母の外に移動させます。
ステップ 2.2
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 2.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.2.2
をかけます。
ステップ 3
とします。次にすると、です。を利用して書き換えます。
タップして手順をさらに表示してください…
ステップ 3.1
とします。を求めます。
タップして手順をさらに表示してください…
ステップ 3.1.1
を微分します。
ステップ 3.1.2
に対して定数なので、に対するの微分係数はです。
ステップ 3.1.3
のとき、であるというべき乗則を使って微分します。
ステップ 3.1.4
をかけます。
ステップ 3.2
を利用して問題を書き換えます。
ステップ 4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
分数の前に負数を移動させます。
ステップ 4.2
をまとめます。
ステップ 5
に対して定数なので、を積分の外に移動させます。
ステップ 6
をかけます。
ステップ 7
に対して定数なので、を積分の外に移動させます。
ステップ 8
簡約します。
タップして手順をさらに表示してください…
ステップ 8.1
をまとめます。
ステップ 8.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.2.1
で因数分解します。
ステップ 8.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.2.2.1
で因数分解します。
ステップ 8.2.2.2
共通因数を約分します。
ステップ 8.2.2.3
式を書き換えます。
ステップ 8.3
分数の前に負数を移動させます。
ステップ 9
に関する積分はです。
ステップ 10
簡約します。
タップして手順をさらに表示してください…
ステップ 10.1
に書き換えます。
ステップ 10.2
簡約します。
タップして手順をさらに表示してください…
ステップ 10.2.1
をかけます。
ステップ 10.2.2
の左に移動させます。
ステップ 11
のすべての発生をで置き換えます。