微分積分 例

曲線間の面積を求める y=3x-x^2 , y=10
,
ステップ 1
代入で解き曲線間の交点を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
各方程式の等辺を消去し、組み合わせます。
ステップ 1.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式の両辺からを引きます。
ステップ 1.2.2
二次方程式の解の公式を利用して解を求めます。
ステップ 1.2.3
、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 1.2.4
簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.1.1
乗します。
ステップ 1.2.4.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.4.1.2.1
をかけます。
ステップ 1.2.4.1.2.2
をかけます。
ステップ 1.2.4.1.3
からを引きます。
ステップ 1.2.4.1.4
に書き換えます。
ステップ 1.2.4.1.5
に書き換えます。
ステップ 1.2.4.1.6
に書き換えます。
ステップ 1.2.4.2
をかけます。
ステップ 1.2.4.3
を簡約します。
ステップ 1.2.5
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.5.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.5.1.1
乗します。
ステップ 1.2.5.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.5.1.2.1
をかけます。
ステップ 1.2.5.1.2.2
をかけます。
ステップ 1.2.5.1.3
からを引きます。
ステップ 1.2.5.1.4
に書き換えます。
ステップ 1.2.5.1.5
に書き換えます。
ステップ 1.2.5.1.6
に書き換えます。
ステップ 1.2.5.2
をかけます。
ステップ 1.2.5.3
を簡約します。
ステップ 1.2.5.4
に変更します。
ステップ 1.2.6
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.2.6.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.6.1.1
乗します。
ステップ 1.2.6.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.6.1.2.1
をかけます。
ステップ 1.2.6.1.2.2
をかけます。
ステップ 1.2.6.1.3
からを引きます。
ステップ 1.2.6.1.4
に書き換えます。
ステップ 1.2.6.1.5
に書き換えます。
ステップ 1.2.6.1.6
に書き換えます。
ステップ 1.2.6.2
をかけます。
ステップ 1.2.6.3
を簡約します。
ステップ 1.2.6.4
に変更します。
ステップ 1.2.7
最終的な答えは両方の解の組み合わせです。
ステップ 1.3
に代入します。
ステップ 1.4
すべての解をまとめます。
ステップ 2
与えられた曲線間の面積は非有界です。
有界でない面積
ステップ 3