微分積分 例

定義域を求める 1/( y-x^2)の平方根
ステップ 1
の被開数を以上として、式が定義である場所を求めます。
ステップ 2
について解きます。
タップして手順をさらに表示してください…
ステップ 2.1
不等式の両辺にを足します。
ステップ 2.2
各根を利用して検定区間を作成します。
ステップ 2.3
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 2.4
この区間になる数がないので、この不等式に解はありません。
解がありません
解がありません
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
について解きます。
タップして手順をさらに表示してください…
ステップ 4.1
方程式の左辺から根を削除するため、方程式の両辺を2乗します。
ステップ 4.2
方程式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
を利用し、に書き換えます。
ステップ 4.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1.1
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 4.2.2.1.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.2.2.1.1.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1.1.2.1
共通因数を約分します。
ステップ 4.2.2.1.1.2.2
式を書き換えます。
ステップ 4.2.2.1.2
簡約します。
ステップ 4.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.3.1
を正数乗し、を得ます。
ステップ 4.3
方程式の両辺にを足します。
ステップ 5
定義域はすべての実数です。
区間記号:
集合の内包的記法:
ステップ 6