問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
の値を求めます。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
にをかけます。
ステップ 1.1.2.4
とをまとめます。
ステップ 1.1.2.5
とをまとめます。
ステップ 1.1.2.6
との共通因数を約分します。
ステップ 1.1.2.6.1
をで因数分解します。
ステップ 1.1.2.6.2
共通因数を約分します。
ステップ 1.1.2.6.2.1
をで因数分解します。
ステップ 1.1.2.6.2.2
共通因数を約分します。
ステップ 1.1.2.6.2.3
式を書き換えます。
ステップ 1.1.2.6.2.4
をで割ります。
ステップ 1.1.3
の値を求めます。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.3
にをかけます。
ステップ 1.1.4
定数の規則を使って微分します。
ステップ 1.1.4.1
はについて定数なので、についての微分係数はです。
ステップ 1.1.4.2
とをたし算します。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
をで因数分解します。
ステップ 2.2.1
をで因数分解します。
ステップ 2.2.2
をで因数分解します。
ステップ 2.2.3
をで因数分解します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
がに等しいとします。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺からを引きます。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
各項を簡約します。
ステップ 4.1.2.1.1
を正数乗し、を得ます。
ステップ 4.1.2.1.2
を掛けます。
ステップ 4.1.2.1.2.1
にをかけます。
ステップ 4.1.2.1.2.2
にをかけます。
ステップ 4.1.2.1.3
を正数乗し、を得ます。
ステップ 4.1.2.1.4
にをかけます。
ステップ 4.1.2.2
足し算と引き算で簡約します。
ステップ 4.1.2.2.1
とをたし算します。
ステップ 4.1.2.2.2
からを引きます。
ステップ 4.2
での値を求めます。
ステップ 4.2.1
をに代入します。
ステップ 4.2.2
簡約します。
ステップ 4.2.2.1
各項を簡約します。
ステップ 4.2.2.1.1
を乗します。
ステップ 4.2.2.1.2
を掛けます。
ステップ 4.2.2.1.2.1
にをかけます。
ステップ 4.2.2.1.2.2
とをまとめます。
ステップ 4.2.2.1.3
を乗します。
ステップ 4.2.2.1.4
にをかけます。
ステップ 4.2.2.2
公分母を求めます。
ステップ 4.2.2.2.1
を分母をもつ分数で書きます。
ステップ 4.2.2.2.2
にをかけます。
ステップ 4.2.2.2.3
にをかけます。
ステップ 4.2.2.2.4
を分母をもつ分数で書きます。
ステップ 4.2.2.2.5
にをかけます。
ステップ 4.2.2.2.6
にをかけます。
ステップ 4.2.2.3
公分母の分子をまとめます。
ステップ 4.2.2.4
各項を簡約します。
ステップ 4.2.2.4.1
にをかけます。
ステップ 4.2.2.4.2
にをかけます。
ステップ 4.2.2.5
式を簡約します。
ステップ 4.2.2.5.1
からを引きます。
ステップ 4.2.2.5.2
からを引きます。
ステップ 4.2.2.5.3
分数の前に負数を移動させます。
ステップ 4.3
点のすべてを一覧にします。
ステップ 5