問題を入力...
微分積分 例
ステップ 1
を関数で書きます。
ステップ 2
ステップ 2.1
総和則では、のに関する積分はです。
ステップ 2.2
の値を求めます。
ステップ 2.2.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.2.1.1
連鎖律を当てはめるために、をとします。
ステップ 2.2.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.1.3
のすべての発生をで置き換えます。
ステップ 2.2.2
総和則では、のに関する積分はです。
ステップ 2.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 2.2.4
はについて定数なので、についての微分係数はです。
ステップ 2.2.5
とをたし算します。
ステップ 2.2.6
にをかけます。
ステップ 2.3
の値を求めます。
ステップ 2.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.3
にをかけます。
ステップ 2.4
定数の規則を使って微分します。
ステップ 2.4.1
はについて定数なので、についての微分係数はです。
ステップ 2.4.2
とをたし算します。
ステップ 3
ステップ 3.1
総和則では、のに関する積分はです。
ステップ 3.2
の値を求めます。
ステップ 3.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 3.2.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 3.2.2.1
連鎖律を当てはめるために、をとします。
ステップ 3.2.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.2.3
のすべての発生をで置き換えます。
ステップ 3.2.3
総和則では、のに関する積分はです。
ステップ 3.2.4
のとき、はであるというべき乗則を使って微分します。
ステップ 3.2.5
はについて定数なので、についての微分係数はです。
ステップ 3.2.6
とをたし算します。
ステップ 3.2.7
にをかけます。
ステップ 3.2.8
にをかけます。
ステップ 3.3
定数の規則を使って微分します。
ステップ 3.3.1
はについて定数なので、についての微分係数はです。
ステップ 3.3.2
とをたし算します。
ステップ 4
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 5
ステップ 5.1
一次導関数を求めます。
ステップ 5.1.1
総和則では、のに関する積分はです。
ステップ 5.1.2
の値を求めます。
ステップ 5.1.2.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 5.1.2.1.1
連鎖律を当てはめるために、をとします。
ステップ 5.1.2.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 5.1.2.1.3
のすべての発生をで置き換えます。
ステップ 5.1.2.2
総和則では、のに関する積分はです。
ステップ 5.1.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 5.1.2.4
はについて定数なので、についての微分係数はです。
ステップ 5.1.2.5
とをたし算します。
ステップ 5.1.2.6
にをかけます。
ステップ 5.1.3
の値を求めます。
ステップ 5.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 5.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 5.1.3.3
にをかけます。
ステップ 5.1.4
定数の規則を使って微分します。
ステップ 5.1.4.1
はについて定数なので、についての微分係数はです。
ステップ 5.1.4.2
とをたし算します。
ステップ 5.2
に関するの一次導関数はです。
ステップ 6
ステップ 6.1
一次導関数をに等しくします。
ステップ 6.2
を簡約します。
ステップ 6.2.1
各項を簡約します。
ステップ 6.2.1.1
二項定理を利用します。
ステップ 6.2.1.2
各項を簡約します。
ステップ 6.2.1.2.1
にをかけます。
ステップ 6.2.1.2.2
1のすべての数の累乗は1です。
ステップ 6.2.1.2.3
にをかけます。
ステップ 6.2.1.2.4
1のすべての数の累乗は1です。
ステップ 6.2.1.2.5
にをかけます。
ステップ 6.2.1.2.6
1のすべての数の累乗は1です。
ステップ 6.2.1.2.7
にをかけます。
ステップ 6.2.1.2.8
1のすべての数の累乗は1です。
ステップ 6.2.1.2.9
にをかけます。
ステップ 6.2.1.2.10
1のすべての数の累乗は1です。
ステップ 6.2.1.3
分配則を当てはめます。
ステップ 6.2.1.4
簡約します。
ステップ 6.2.1.4.1
にをかけます。
ステップ 6.2.1.4.2
にをかけます。
ステップ 6.2.1.4.3
にをかけます。
ステップ 6.2.1.4.4
にをかけます。
ステップ 6.2.1.4.5
にをかけます。
ステップ 6.2.1.4.6
にをかけます。
ステップ 6.2.2
の反対側の項を組み合わせます。
ステップ 6.2.2.1
からを引きます。
ステップ 6.2.2.2
とをたし算します。
ステップ 6.3
方程式の各辺をグラフにします。解は交点のx値です。
ステップ 7
ステップ 7.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 8
値を求める臨界点です。
ステップ 9
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 10
ステップ 10.1
とをたし算します。
ステップ 10.2
を乗します。
ステップ 10.3
にをかけます。
ステップ 11
は二次導関数の値が負であるため、極大値です。これは二次導関数テストと呼ばれます。
は極大値です
ステップ 12
ステップ 12.1
式の変数をで置換えます。
ステップ 12.2
結果を簡約します。
ステップ 12.2.1
各項を簡約します。
ステップ 12.2.1.1
とをたし算します。
ステップ 12.2.1.2
を乗します。
ステップ 12.2.1.3
にをかけます。
ステップ 12.2.2
足し算と引き算で簡約します。
ステップ 12.2.2.1
とをたし算します。
ステップ 12.2.2.2
からを引きます。
ステップ 12.2.3
最終的な答えはです。
ステップ 13
で二次導関数の値を求めます。二次導関数が正のとき、この値が極小値です。二次導関数が負の時、この値が極大値です。
ステップ 14
ステップ 14.1
とをたし算します。
ステップ 14.2
1のすべての数の累乗は1です。
ステップ 14.3
にをかけます。
ステップ 15
は二次導関数の値が正であるため、極小値です。これは二次導関数テストと呼ばれます。
は極小値です
ステップ 16
ステップ 16.1
式の変数をで置換えます。
ステップ 16.2
結果を簡約します。
ステップ 16.2.1
各項を簡約します。
ステップ 16.2.1.1
とをたし算します。
ステップ 16.2.1.2
1のすべての数の累乗は1です。
ステップ 16.2.1.3
にをかけます。
ステップ 16.2.2
足し算と引き算で簡約します。
ステップ 16.2.2.1
とをたし算します。
ステップ 16.2.2.2
からを引きます。
ステップ 16.2.3
最終的な答えはです。
ステップ 17
の極値です。
は極大値です
は極小値です
ステップ 18