微分積分 例

臨界点を求める 5x-4 xの自然対数
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
総和則では、に関する積分はです。
ステップ 1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3
をかけます。
ステップ 1.1.3
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.3.1
に対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
に関するの微分係数はです。
ステップ 1.1.3.3
をまとめます。
ステップ 1.1.3.4
分数の前に負数を移動させます。
ステップ 1.1.4
項を並べ替えます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
方程式の両辺からを引きます。
ステップ 2.3
方程式の項の最小公分母を求めます。
タップして手順をさらに表示してください…
ステップ 2.3.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.3.2
1と任意の式の最小公倍数はその式です。
ステップ 2.4
の各項にを掛け、分数を消去します。
タップして手順をさらに表示してください…
ステップ 2.4.1
の各項にを掛けます。
ステップ 2.4.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.4.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.4.2.1.1
の先頭の負を分子に移動させます。
ステップ 2.4.2.1.2
共通因数を約分します。
ステップ 2.4.2.1.3
式を書き換えます。
ステップ 2.5
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.5.1
方程式をとして書き換えます。
ステップ 2.5.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.2.1
の各項をで割ります。
ステップ 2.5.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.5.2.2.1.1
共通因数を約分します。
ステップ 2.5.2.2.1.2
で割ります。
ステップ 2.5.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.5.2.3.1
2つの負の値を割ると正の値になります。
ステップ 3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
微分係数がまたは未定義のとき、各におけるの値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
に代入します。
ステップ 4.1.2
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.1
共通因数を約分します。
ステップ 4.1.2.1.2
式を書き換えます。
ステップ 4.1.2.2
対数の中のを移動させてを簡約します。
ステップ 4.1.2.3
積の法則をに当てはめます。
ステップ 4.1.2.4
乗します。
ステップ 4.1.2.5
乗します。
ステップ 4.2
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.2.1
に代入します。
ステップ 4.2.2
0の自然対数は未定義です。
未定義
未定義
ステップ 4.3
点のすべてを一覧にします。
ステップ 5