問題を入力...
微分積分 例
ステップ 1
をに書き換えます。
ステップ 2
ステップ 2.1
分子と分母の極限値を求めます。
ステップ 2.1.1
分子と分母の極限値をとります。
ステップ 2.1.2
分子の極限値を求めます。
ステップ 2.1.2.1
極限を求めます。
ステップ 2.1.2.1.1
正切が連続なので、極限を三角関数の中に移動させます。
ステップ 2.1.2.1.2
の項はに対して一定なので、極限の外に移動させます。
ステップ 2.1.2.2
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 2.1.2.3
答えを簡約します。
ステップ 2.1.2.3.1
にをかけます。
ステップ 2.1.2.3.2
の厳密値はです。
ステップ 2.1.3
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 2.1.4
による除算を含む式です。式は未定義です。
未定義
ステップ 2.2
は不定形があるので、ロピタルの定理を当てはめます。ロピタルの定理は、関数の商の極限は微分係数の商の極限に等しいとしています。
ステップ 2.3
分子と分母の微分係数を求めます。
ステップ 2.3.1
分母と分子を微分します。
ステップ 2.3.2
およびのとき、はであるという連鎖律を使って微分します。
ステップ 2.3.2.1
連鎖律を当てはめるために、をとします。
ステップ 2.3.2.2
に関するの微分係数はです。
ステップ 2.3.2.3
のすべての発生をで置き換えます。
ステップ 2.3.3
はに対して定数なので、に対するの微分係数はです。
ステップ 2.3.4
をに書き換えます。
ステップ 2.3.5
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.6
にをかけます。
ステップ 2.3.7
簡約します。
ステップ 2.3.7.1
負の指数法則を利用して式を書き換えます。
ステップ 2.3.7.2
項をまとめます。
ステップ 2.3.7.2.1
とをまとめます。
ステップ 2.3.7.2.2
分数の前に負数を移動させます。
ステップ 2.3.7.2.3
とをまとめます。
ステップ 2.3.7.2.4
をの左に移動させます。
ステップ 2.3.7.3
分子を簡約します。
ステップ 2.3.7.3.1
正弦と余弦に関してを書き換えます。
ステップ 2.3.7.3.2
積の法則をに当てはめます。
ステップ 2.3.7.3.3
1のすべての数の累乗は1です。
ステップ 2.3.7.4
とをまとめます。
ステップ 2.3.7.5
分子に分母の逆数を掛けます。
ステップ 2.3.7.6
まとめる。
ステップ 2.3.7.7
にをかけます。
ステップ 2.3.7.8
の因数を並べ替えます。
ステップ 2.3.8
をに書き換えます。
ステップ 2.3.9
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3.10
負の指数法則を利用して式を書き換えます。
ステップ 2.4
分子に分母の逆数を掛けます。
ステップ 2.5
因数をまとめます。
ステップ 2.5.1
にをかけます。
ステップ 2.5.2
にをかけます。
ステップ 2.5.3
とをまとめます。
ステップ 2.6
の共通因数を約分します。
ステップ 2.6.1
共通因数を約分します。
ステップ 2.6.2
式を書き換えます。
ステップ 2.7
を掛けます。
ステップ 2.8
分数を分解します。
ステップ 2.9
をに変換します。
ステップ 2.10
をで割ります。
ステップ 3
ステップ 3.1
の項はに対して一定なので、極限の外に移動させます。
ステップ 3.2
極限べき乗則を利用して、指数をから極限値外側に移動させます。
ステップ 3.3
正割が連続なので、極限を三角関数の中に移動させます。
ステップ 3.4
の項はに対して一定なので、極限の外に移動させます。
ステップ 4
分子が実数に近づき、分母が有界でないので、分数はに近づきます。
ステップ 5
ステップ 5.1
にをかけます。
ステップ 5.2
の厳密値はです。
ステップ 5.3
1のすべての数の累乗は1です。
ステップ 5.4
にをかけます。