問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
およびのとき、はであるという商の法則を使って微分します。
ステップ 1.1.2
に関するの微分係数はです。
ステップ 1.1.3
べき乗則を使って微分します。
ステップ 1.1.3.1
とをまとめます。
ステップ 1.1.3.2
の共通因数を約分します。
ステップ 1.1.3.2.1
共通因数を約分します。
ステップ 1.1.3.2.2
式を書き換えます。
ステップ 1.1.3.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.4
にをかけます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
について方程式を解きます。
ステップ 2.3.1
方程式の両辺からを引きます。
ステップ 2.3.2
の各項をで割り、簡約します。
ステップ 2.3.2.1
の各項をで割ります。
ステップ 2.3.2.2
左辺を簡約します。
ステップ 2.3.2.2.1
2つの負の値を割ると正の値になります。
ステップ 2.3.2.2.2
をで割ります。
ステップ 2.3.2.3
右辺を簡約します。
ステップ 2.3.2.3.1
をで割ります。
ステップ 2.3.3
について解くために、対数の性質を利用して方程式を書き換えます。
ステップ 2.3.4
対数の定義を利用してを指数表記に書き換えます。とが正の実数でならば、はと同値です。
ステップ 2.3.5
方程式をとして書き換えます。
ステップ 3
ステップ 3.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 3.2
について解きます。
ステップ 3.2.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.2.2
を簡約します。
ステップ 3.2.2.1
をに書き換えます。
ステップ 3.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.2.2.3
プラスマイナスはです。
ステップ 3.3
の偏角をより小さいとして、式が未定義である場所を求めます。
ステップ 3.4
分母がに等しい、平方根の引数がより小さい、または対数の引数が以下の場合、方程式は未定義です。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
の自然対数はです。
ステップ 4.2
での値を求めます。
ステップ 4.2.1
をに代入します。
ステップ 4.2.2
による除算を含む式です。式は未定義です。
未定義
未定義
ステップ 4.3
点のすべてを一覧にします。
ステップ 5