問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
総和則では、のに関する積分はです。
ステップ 1.1.2
の値を求めます。
ステップ 1.1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.2.3
とをまとめます。
ステップ 1.1.2.4
とをまとめます。
ステップ 1.1.2.5
の共通因数を約分します。
ステップ 1.1.2.5.1
共通因数を約分します。
ステップ 1.1.2.5.2
をで割ります。
ステップ 1.1.3
の値を求めます。
ステップ 1.1.3.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.3
とをまとめます。
ステップ 1.1.3.4
とをまとめます。
ステップ 1.1.3.5
の共通因数を約分します。
ステップ 1.1.3.5.1
共通因数を約分します。
ステップ 1.1.3.5.2
をで割ります。
ステップ 1.1.4
の値を求めます。
ステップ 1.1.4.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.4.3
にをかけます。
ステップ 1.1.5
定数の規則を使って微分します。
ステップ 1.1.5.1
はについて定数なので、についての微分係数はです。
ステップ 1.1.5.2
とをたし算します。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
たすき掛けを利用してを因数分解します。
ステップ 2.2.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 2.2.2
この整数を利用して因数分解の形を書きます。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
方程式の両辺にを足します。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺からを引きます。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
各項を簡約します。
ステップ 4.1.2.1.1
1のすべての数の累乗は1です。
ステップ 4.1.2.1.2
1のすべての数の累乗は1です。
ステップ 4.1.2.1.3
にをかけます。
ステップ 4.1.2.2
公分母を求めます。
ステップ 4.1.2.2.1
にをかけます。
ステップ 4.1.2.2.2
にをかけます。
ステップ 4.1.2.2.3
にをかけます。
ステップ 4.1.2.2.4
にをかけます。
ステップ 4.1.2.2.5
を分母をもつ分数で書きます。
ステップ 4.1.2.2.6
にをかけます。
ステップ 4.1.2.2.7
にをかけます。
ステップ 4.1.2.2.8
を分母をもつ分数で書きます。
ステップ 4.1.2.2.9
にをかけます。
ステップ 4.1.2.2.10
にをかけます。
ステップ 4.1.2.2.11
の因数を並べ替えます。
ステップ 4.1.2.2.12
にをかけます。
ステップ 4.1.2.2.13
にをかけます。
ステップ 4.1.2.3
公分母の分子をまとめます。
ステップ 4.1.2.4
各項を簡約します。
ステップ 4.1.2.4.1
にをかけます。
ステップ 4.1.2.4.2
にをかけます。
ステップ 4.1.2.5
足し算と引き算で簡約します。
ステップ 4.1.2.5.1
とをたし算します。
ステップ 4.1.2.5.2
からを引きます。
ステップ 4.1.2.5.3
とをたし算します。
ステップ 4.2
での値を求めます。
ステップ 4.2.1
をに代入します。
ステップ 4.2.2
簡約します。
ステップ 4.2.2.1
各項を簡約します。
ステップ 4.2.2.1.1
を乗します。
ステップ 4.2.2.1.2
分数の前に負数を移動させます。
ステップ 4.2.2.1.3
との共通因数を約分します。
ステップ 4.2.2.1.3.1
をに書き換えます。
ステップ 4.2.2.1.3.2
積の法則をに当てはめます。
ステップ 4.2.2.1.3.3
を乗します。
ステップ 4.2.2.1.3.4
にをかけます。
ステップ 4.2.2.1.3.5
をで因数分解します。
ステップ 4.2.2.1.3.6
共通因数を約分します。
ステップ 4.2.2.1.3.6.1
をで因数分解します。
ステップ 4.2.2.1.3.6.2
共通因数を約分します。
ステップ 4.2.2.1.3.6.3
式を書き換えます。
ステップ 4.2.2.1.3.6.4
をで割ります。
ステップ 4.2.2.1.4
にをかけます。
ステップ 4.2.2.2
公分母を求めます。
ステップ 4.2.2.2.1
を分母をもつ分数で書きます。
ステップ 4.2.2.2.2
にをかけます。
ステップ 4.2.2.2.3
にをかけます。
ステップ 4.2.2.2.4
を分母をもつ分数で書きます。
ステップ 4.2.2.2.5
にをかけます。
ステップ 4.2.2.2.6
にをかけます。
ステップ 4.2.2.2.7
を分母をもつ分数で書きます。
ステップ 4.2.2.2.8
にをかけます。
ステップ 4.2.2.2.9
にをかけます。
ステップ 4.2.2.3
公分母の分子をまとめます。
ステップ 4.2.2.4
各項を簡約します。
ステップ 4.2.2.4.1
にをかけます。
ステップ 4.2.2.4.2
にをかけます。
ステップ 4.2.2.4.3
にをかけます。
ステップ 4.2.2.5
数を加えて簡約します。
ステップ 4.2.2.5.1
とをたし算します。
ステップ 4.2.2.5.2
とをたし算します。
ステップ 4.2.2.5.3
とをたし算します。
ステップ 4.3
点のすべてを一覧にします。
ステップ 5