問題を入力...
微分積分 例
;
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
一次導関数を求めます。
ステップ 1.1.1.1
およびのとき、はであるという積の法則を使って微分します。
ステップ 1.1.1.2
微分します。
ステップ 1.1.1.2.1
総和則では、のに関する積分はです。
ステップ 1.1.1.2.2
はについて定数なので、についての微分係数はです。
ステップ 1.1.1.2.3
とをたし算します。
ステップ 1.1.1.2.4
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.1.2.5
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.2.6
式を簡約します。
ステップ 1.1.1.2.6.1
にをかけます。
ステップ 1.1.1.2.6.2
をの左に移動させます。
ステップ 1.1.1.2.6.3
をに書き換えます。
ステップ 1.1.1.2.7
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.2.8
項を加えて簡約します。
ステップ 1.1.1.2.8.1
にをかけます。
ステップ 1.1.1.2.8.2
からを引きます。
ステップ 1.1.2
に関するの一次導関数はです。
ステップ 1.2
一次導関数をと等しくし、次に方程式を解きます。
ステップ 1.2.1
一次導関数をに等しくします。
ステップ 1.2.2
方程式の両辺からを引きます。
ステップ 1.2.3
の各項をで割り、簡約します。
ステップ 1.2.3.1
の各項をで割ります。
ステップ 1.2.3.2
左辺を簡約します。
ステップ 1.2.3.2.1
の共通因数を約分します。
ステップ 1.2.3.2.1.1
共通因数を約分します。
ステップ 1.2.3.2.1.2
をで割ります。
ステップ 1.2.3.3
右辺を簡約します。
ステップ 1.2.3.3.1
をで割ります。
ステップ 1.3
微分係数が未定義になる値を求めます。
ステップ 1.3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 1.4
微分係数がまたは未定義のとき、各におけるの値を求めます。
ステップ 1.4.1
での値を求めます。
ステップ 1.4.1.1
をに代入します。
ステップ 1.4.1.2
簡約します。
ステップ 1.4.1.2.1
にをかけます。
ステップ 1.4.1.2.2
からを引きます。
ステップ 1.4.1.2.3
にをかけます。
ステップ 1.4.2
点のすべてを一覧にします。
ステップ 2
ステップ 2.1
一次導関数または未定義になる値の周囲で、を分離区間に分割します。
ステップ 2.2
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
ステップ 2.2.1
式の変数をで置換えます。
ステップ 2.2.2
結果を簡約します。
ステップ 2.2.2.1
にをかけます。
ステップ 2.2.2.2
とをたし算します。
ステップ 2.2.2.3
最終的な答えはです。
ステップ 2.3
一次導関数の区間からなどの任意の数を代入し、結果が負か正か確認します。
ステップ 2.3.1
式の変数をで置換えます。
ステップ 2.3.2
結果を簡約します。
ステップ 2.3.2.1
にをかけます。
ステップ 2.3.2.2
とをたし算します。
ステップ 2.3.2.3
最終的な答えはです。
ステップ 2.4
の周囲で一次導関数の符号が正から負に変化したので、は極大値です。
は極大値です
は極大値です
ステップ 3
の各値に対して求めたの値を比較し、与えられた区間での最大限と最小限を決定します。最大限は最も高いの値で発生し、最小値は最も低いの値で発生します。
最大値:
絶対最小値はありません
ステップ 4