微分積分 例

臨界点を求める 1-1/(x^(2/3))
ステップ 1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
一次導関数を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.1
微分します。
タップして手順をさらに表示してください…
ステップ 1.1.1.1
総和則では、に関する積分はです。
ステップ 1.1.1.2
について定数なので、についての微分係数はです。
ステップ 1.1.2
の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.1.2.1
およびのとき、であるという積の法則を使って微分します。
ステップ 1.1.2.2
に書き換えます。
ステップ 1.1.2.3
およびのとき、であるという連鎖律を使って微分します。
タップして手順をさらに表示してください…
ステップ 1.1.2.3.1
連鎖律を当てはめるために、とします。
ステップ 1.1.2.3.2
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.3.3
のすべての発生をで置き換えます。
ステップ 1.1.2.4
のとき、であるというべき乗則を使って微分します。
ステップ 1.1.2.5
について定数なので、についての微分係数はです。
ステップ 1.1.2.6
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 1.1.2.6.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 1.1.2.6.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 1.1.2.6.2.1
をまとめます。
ステップ 1.1.2.6.2.2
をかけます。
ステップ 1.1.2.6.3
分数の前に負数を移動させます。
ステップ 1.1.2.7
を公分母のある分数として書くために、を掛けます。
ステップ 1.1.2.8
をまとめます。
ステップ 1.1.2.9
公分母の分子をまとめます。
ステップ 1.1.2.10
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.1.2.10.1
をかけます。
ステップ 1.1.2.10.2
からを引きます。
ステップ 1.1.2.11
分数の前に負数を移動させます。
ステップ 1.1.2.12
をまとめます。
ステップ 1.1.2.13
をまとめます。
ステップ 1.1.2.14
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.1.2.14.1
を移動させます。
ステップ 1.1.2.14.2
べき乗則を利用して指数を組み合わせます。
ステップ 1.1.2.14.3
公分母の分子をまとめます。
ステップ 1.1.2.14.4
からを引きます。
ステップ 1.1.2.14.5
分数の前に負数を移動させます。
ステップ 1.1.2.15
負の指数法則を利用してを分母に移動させます。
ステップ 1.1.2.16
をかけます。
ステップ 1.1.2.17
をかけます。
ステップ 1.1.2.18
をかけます。
ステップ 1.1.2.19
をたし算します。
ステップ 1.1.3
をたし算します。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
一次導関数をと等しくし、次に方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
なので、解はありません。
解がありません
解がありません
ステップ 3
微分係数が未定義になる値を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
法則を当てはめ、累乗法を根で書き換えます。
ステップ 3.2
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.1
方程式の左辺から根を削除するため、方程式の両辺を3乗します。
ステップ 3.3.2
方程式の各辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.1
を利用し、に書き換えます。
ステップ 3.3.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.1
積の法則をに当てはめます。
ステップ 3.3.2.2.1.2
乗します。
ステップ 3.3.2.2.1.3
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.3.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.3.2.2.1.3.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.2.2.1.3.2.1
共通因数を約分します。
ステップ 3.3.2.2.1.3.2.2
式を書き換えます。
ステップ 3.3.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.2.3.1
を正数乗し、を得ます。
ステップ 3.3.3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.3.3.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1.1
の各項をで割ります。
ステップ 3.3.3.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1.2.1.1
共通因数を約分します。
ステップ 3.3.3.1.2.1.2
で割ります。
ステップ 3.3.3.1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.1.3.1
で割ります。
ステップ 3.3.3.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.3.3.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.3.3.1
に書き換えます。
ステップ 3.3.3.3.2
実数と仮定して、累乗根の下から項を取り出します。
ステップ 4
微分係数がまたは未定義のとき、各におけるの値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1
での値を求めます。
タップして手順をさらに表示してください…
ステップ 4.1.1
に代入します。
ステップ 4.1.2
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
式を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.2.1.1
に書き換えます。
ステップ 4.1.2.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.1.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.2.2.1
共通因数を約分します。
ステップ 4.1.2.2.2
式を書き換えます。
ステップ 4.1.2.3
を正数乗し、を得ます。
ステップ 4.1.2.4
による除算を含む式です。式は未定義です。
未定義
未定義
未定義
未定義
ステップ 5
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません