問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.1.2
およびのとき、はであるという商の法則を使って微分します。
ステップ 1.1.3
べき乗則を使って微分します。
ステップ 1.1.3.1
の指数を掛けます。
ステップ 1.1.3.1.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 1.1.3.1.2
にをかけます。
ステップ 1.1.3.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.3.3
にをかけます。
ステップ 1.1.4
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.4.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.4.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.4.3
のすべての発生をで置き換えます。
ステップ 1.1.5
くくりだして簡約します。
ステップ 1.1.5.1
にをかけます。
ステップ 1.1.5.2
をで因数分解します。
ステップ 1.1.5.2.1
をで因数分解します。
ステップ 1.1.5.2.2
をで因数分解します。
ステップ 1.1.5.2.3
をで因数分解します。
ステップ 1.1.6
共通因数を約分します。
ステップ 1.1.6.1
をで因数分解します。
ステップ 1.1.6.2
共通因数を約分します。
ステップ 1.1.6.3
式を書き換えます。
ステップ 1.1.7
総和則では、のに関する積分はです。
ステップ 1.1.8
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.9
はについて定数なので、についての微分係数はです。
ステップ 1.1.10
式を簡約します。
ステップ 1.1.10.1
とをたし算します。
ステップ 1.1.10.2
にをかけます。
ステップ 1.1.11
を乗します。
ステップ 1.1.12
を乗します。
ステップ 1.1.13
べき乗則を利用して指数を組み合わせます。
ステップ 1.1.14
とをたし算します。
ステップ 1.1.15
からを引きます。
ステップ 1.1.16
とをまとめます。
ステップ 1.1.17
分数の前に負数を移動させます。
ステップ 1.1.18
簡約します。
ステップ 1.1.18.1
分配則を当てはめます。
ステップ 1.1.18.2
各項を簡約します。
ステップ 1.1.18.2.1
にをかけます。
ステップ 1.1.18.2.2
にをかけます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
について方程式を解きます。
ステップ 2.3.1
方程式の両辺にを足します。
ステップ 2.3.2
の各項をで割り、簡約します。
ステップ 2.3.2.1
の各項をで割ります。
ステップ 2.3.2.2
左辺を簡約します。
ステップ 2.3.2.2.1
の共通因数を約分します。
ステップ 2.3.2.2.1.1
共通因数を約分します。
ステップ 2.3.2.2.1.2
をで割ります。
ステップ 2.3.2.3
右辺を簡約します。
ステップ 2.3.2.3.1
をで割ります。
ステップ 2.3.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.3.4
を簡約します。
ステップ 2.3.4.1
をに書き換えます。
ステップ 2.3.4.2
をに書き換えます。
ステップ 2.3.4.3
をに書き換えます。
ステップ 2.3.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.3.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.3.5.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.3.5.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3
ステップ 3.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 3.2
について解きます。
ステップ 3.2.1
方程式の左辺を因数分解します。
ステップ 3.2.1.1
をに書き換えます。
ステップ 3.2.1.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3.2.1.3
積の法則をに当てはめます。
ステップ 3.2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.2.3
をに等しくし、を解きます。
ステップ 3.2.3.1
がに等しいとします。
ステップ 3.2.3.2
についてを解きます。
ステップ 3.2.3.2.1
がに等しいとします。
ステップ 3.2.3.2.2
方程式の両辺からを引きます。
ステップ 3.2.4
をに等しくし、を解きます。
ステップ 3.2.4.1
がに等しいとします。
ステップ 3.2.4.2
についてを解きます。
ステップ 3.2.4.2.1
がに等しいとします。
ステップ 3.2.4.2.2
方程式の両辺にを足します。
ステップ 3.2.5
最終解はを真にするすべての値です。
ステップ 3.3
分母がに等しい、平方根の引数がより小さい、または対数の引数が以下の場合、方程式は未定義です。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
を乗します。
ステップ 4.1.2.2
からを引きます。
ステップ 4.1.2.3
を正数乗し、を得ます。
ステップ 4.1.2.4
による除算を含む式です。式は未定義です。
未定義
未定義
未定義
ステップ 4.2
での値を求めます。
ステップ 4.2.1
をに代入します。
ステップ 4.2.2
簡約します。
ステップ 4.2.2.1
を乗します。
ステップ 4.2.2.2
からを引きます。
ステップ 4.2.2.3
を正数乗し、を得ます。
ステップ 4.2.2.4
による除算を含む式です。式は未定義です。
未定義
未定義
未定義
未定義
ステップ 5
微分係数がまたは未定義であるという、元の問題の定義域にの値はありません。
臨界点が見つかりません