問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
一次導関数を求めます。
ステップ 1.1.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.1.2
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.1.3
のすべての発生をで置き換えます。
ステップ 1.1.2
を公分母のある分数として書くために、を掛けます。
ステップ 1.1.3
とをまとめます。
ステップ 1.1.4
公分母の分子をまとめます。
ステップ 1.1.5
分子を簡約します。
ステップ 1.1.5.1
にをかけます。
ステップ 1.1.5.2
からを引きます。
ステップ 1.1.6
とをまとめます。
ステップ 1.1.7
総和則では、のに関する積分はです。
ステップ 1.1.8
のとき、はであるというべき乗則を使って微分します。
ステップ 1.1.9
はについて定数なので、についての微分係数はです。
ステップ 1.1.10
式を簡約します。
ステップ 1.1.10.1
とをたし算します。
ステップ 1.1.10.2
にをかけます。
ステップ 1.2
に関するの一次導関数はです。
ステップ 2
ステップ 2.1
一次導関数をに等しくします。
ステップ 2.2
分子を0に等しくします。
ステップ 2.3
について方程式を解きます。
ステップ 2.3.1
の各項をで割り、簡約します。
ステップ 2.3.1.1
の各項をで割ります。
ステップ 2.3.1.2
左辺を簡約します。
ステップ 2.3.1.2.1
共通因数を約分します。
ステップ 2.3.1.2.2
をで割ります。
ステップ 2.3.1.3
右辺を簡約します。
ステップ 2.3.1.3.1
をで割ります。
ステップ 2.3.2
がに等しいとします。
ステップ 2.3.3
方程式の両辺にを足します。
ステップ 3
ステップ 3.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 4
ステップ 4.1
での値を求めます。
ステップ 4.1.1
をに代入します。
ステップ 4.1.2
簡約します。
ステップ 4.1.2.1
式を簡約します。
ステップ 4.1.2.1.1
からを引きます。
ステップ 4.1.2.1.2
をに書き換えます。
ステップ 4.1.2.1.3
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.1.2.2
の共通因数を約分します。
ステップ 4.1.2.2.1
共通因数を約分します。
ステップ 4.1.2.2.2
式を書き換えます。
ステップ 4.1.2.3
を正数乗し、を得ます。
ステップ 4.2
点のすべてを一覧にします。
ステップ 5