問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
負の指数法則を利用して式を書き換えます。
ステップ 1.2
総和則では、のに関する積分はです。
ステップ 1.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.4
はについて定数なので、についての微分係数はです。
ステップ 1.5
はについて定数なので、についての微分係数はです。
ステップ 1.6
項をまとめます。
ステップ 1.6.1
とをたし算します。
ステップ 1.6.2
とをたし算します。
ステップ 2
はについて定数なので、についての微分係数はです。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 5
極値がありません
ステップ 6