問題を入力...
微分積分 例
ステップ 1
ステップ 1.1
およびのとき、はであるという連鎖律を使って微分します。
ステップ 1.1.1
連鎖律を当てはめるために、をとします。
ステップ 1.1.2
に関するの微分係数はです。
ステップ 1.1.3
のすべての発生をで置き換えます。
ステップ 1.2
微分します。
ステップ 1.2.1
はに対して定数なので、に対するの微分係数はです。
ステップ 1.2.2
項を簡約します。
ステップ 1.2.2.1
とをまとめます。
ステップ 1.2.2.2
の共通因数を約分します。
ステップ 1.2.2.2.1
共通因数を約分します。
ステップ 1.2.2.2.2
式を書き換えます。
ステップ 1.2.3
のとき、はであるというべき乗則を使って微分します。
ステップ 1.2.4
にをかけます。
ステップ 2
ステップ 2.1
をに書き換えます。
ステップ 2.2
のとき、はであるというべき乗則を使って微分します。
ステップ 2.3
負の指数法則を利用して式を書き換えます。
ステップ 3
微分係数をと等しくし、式を解いて関数の極大値と最小値を求めます。
ステップ 4
一次導関数がに等しくなるの値がないので、極値はありません。
極値がありません
ステップ 5
極値がありません
ステップ 6